A193546 Numerator of the third row of the inverse Akiyama-Tanigawa algorithm from 1/n.
1, 1, 7, 17, 41, 731, 8563, 27719, 190073, 516149, 1013143139, 1519024289, 14108351869, 14399405173, 23142912688967, 83945247395407, 84894728616107, 3204549982389941, 262488267575333123, 9027726081126601799, 2026692221793223022131, 1375035304877251309001
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Iaroslav V. Blagouchine, Three notes on Ser's and Hasse's representation for the zeta-functions, Integers (2018) 18A, Article #A3.
Crossrefs
Cf. A194506 (denominator).
Programs
-
Maple
read("transforms3") ; L := [seq(1/n,n=1..20)] ; L1 := AKIYAMATANIGAWAi(L) ; L2 := AKIYATANI(L1) ; L3 := AKIYATANI(L2) ; apply(numer,%) ; # R. J. Mathar, Aug 27 2011 # second Maple program: b:= proc (n, k) option remember; `if`(n=0, 1/(k+1), b(n-1, k) -b(n-1, k+1)/n) end: a:= n-> numer(b(n, 2)): seq(a(n), n=0..30); # Alois P. Heinz, Aug 27 2011
-
Mathematica
a[n_, 0] := 1/(n+1); a[n_, m_] := a[n, m] = a[n, m-1] - a[n+1, m-1]/m; Table[a[2, m], {m, 0, 21}] // Numerator (* Jean-François Alcover, Aug 09 2012 *) Numerator@Table[(-1)^n (n + 1) Integrate[FunctionExpand[x Binomial[x, n + 1]], {x, 0, 1}], {n, 0, 20}] (* Vladimir Reshetnikov, Feb 01 2017 *)
Formula
a(n)/A194506(n) = (-1)^n * (n+1) * Integral_{0Vladimir Reshetnikov, Feb 01 2017
Comments