cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055244 Number of certain stackings of n+1 squares on a double staircase.

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 43, 79, 143, 256, 454, 799, 1397, 2429, 4203, 7242, 12432, 21271, 36287, 61739, 104791, 177476, 299978, 506111, 852457, 1433593, 2407443, 4037454, 6762708, 11314391, 18909139, 31569799, 52657247, 87751624
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2000

Keywords

Comments

a(n)= G_{n+1} of Turban reference eq.(3.9).
Equals A046854 * [1,2,3,...]. - Gary W. Adamson, Dec 23 2008
(1 + x + 3x^2 + 6x^3 + ...) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ...) * (1 + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + ...). -Gary W. Adamson, Jul 27 2010
Column 1 of A194540. - R. H. Hardin, Aug 28 2011

References

  • L. Turban, Lattice animals on a staircase and Fibonacci numbers, J.Phys. A 33 (2000) 2587-2595.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[1,-1,2,-4]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,1,-2,-1][i] else 0 fi)^(n))[1,1] ; seq (a(n), n=0..33); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = (((n-4)*n-6)*a[n-2] + ((n-5)*n-11)*a[n-1]) / ((n-6)*n-1); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 11 2014 *)
    CoefficientList[Series[(1 - x + x^3)/(1 - x - x^2)^2, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)
    LinearRecurrence[{2,1,-2,-1},{1,1,3,6},60] (* Harvey P. Dale, Jul 13 2022 *)

Formula

G.f.: (1-x+x^3)/(1-x-x^2)^2. (from Turban reference eq.(3.3) with t=1).
a(n) = ((n+5)*F(n+1)+(2*n-3)*F(n))/5 with F(n)=A000045(n) (Fibonacci numbers) (from Turban reference eq.(3.9)).
a(n) = A001629(n+1) + F(n-1). - Gary W. Adamson, Jul 27 2007
a(n) = (((n-4)*n-6)*a(n-2) + ((n-5)*n-11)*a(n-1)) / ((n-6)*n-1). - Jean-François Alcover, Mar 11 2014

A194535 Number of lower triangles of an n X n 0..3 array with new values introduced in row major order 0..3 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 116, 16556, 7721920, 11525456507, 54979732214116, 838387866908847478, 40866499579695484000499, 6367568042830726931523028453, 3171485572844765112503023656979959
Offset: 1

Views

Author

R. H. Hardin Aug 28 2011

Keywords

Comments

Column 3 of A194540

Examples

			Some solutions for 3X3
..0......0......0......0......0......0......0......0......0......0......0
..1.2....1.1....1.2....1.2....1.1....1.2....1.2....1.2....1.0....1.2....1.1
..3.3.0..0.0.2..2.3.1..0.3.0..2.0.1..3.2.1..0.3.1..2.1.3..2.1.2..2.0.1..2.2.1
		

A194534 Number of lower triangles of an n X n 0..2 array with new values introduced in row major order 0..2 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 59, 1851, 119548, 16039294, 4460214471, 2572187445993, 3075932897564028, 7627704068111688574, 39223874584658826539499, 418261269510360187893175534, 9248796169262343437995449320699, 424095060368117191810477243815045914
Offset: 1

Views

Author

R. H. Hardin Aug 28 2011

Keywords

Comments

Column 2 of A194540

Examples

			Some solutions for 3X3
..0......0......0......0......0......0......0......0......0......0......0
..0.1....0.1....1.2....1.1....1.2....1.1....1.1....1.2....1.1....1.0....1.1
..2.0.0..1.0.0..0.2.0..2.0.0..2.1.2..0.2.1..2.2.1..0.1.0..2.0.2..1.2.0..0.2.0
		

A194536 Number of lower triangles of an n X n 0..4 array with new values introduced in row major order 0..4 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 131, 43785, 79201795, 627974590650, 21399815343394998, 3132305932642809585983, 1969210116072259125767299138
Offset: 1

Views

Author

R. H. Hardin, Aug 28 2011

Keywords

Comments

Column 4 of A194540.

Examples

			Some solutions for 3 X 3
..0......0......0......0......0......0......0......0......0......0......0
..1.2....1.0....1.2....1.1....1.0....1.2....1.0....0.1....1.2....1.2....0.1
..2.0.1..2.2.1..0.1.0..0.2.1..2.3.4..3.2.0..0.2.3..1.0.0..2.1.2..0.3.1..1.0.1
		

Crossrefs

Cf. A194540.

A194537 Number of lower triangles of an n X n 0..5 array with new values introduced in row major order 0..5 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 132, 62038, 286773762, 8096809998526, 1243336605965267360, 1026437889413641002431445
Offset: 1

Views

Author

R. H. Hardin Aug 28 2011

Keywords

Comments

Column 5 of A194540

Examples

			Some solutions for 3X3
..0......0......0......0......0......0......0......0......0......0......0
..1.2....1.2....1.2....1.2....1.2....1.2....0.1....1.0....1.1....0.1....0.1
..2.0.3..0.2.1..3.1.1..3.2.1..3.0.1..3.4.1..1.0.1..2.0.1..0.0.2..1.0.2..1.0.0
		

A194538 Number of lower triangles of an n X n 0..6 array with new values introduced in row major order 0..6 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 132, 67377, 543350470, 40994098419294, 21253155706215768591, 71381360690596538575641162
Offset: 1

Views

Author

R. H. Hardin Aug 28 2011

Keywords

Comments

Column 6 of A194540

Examples

			Some solutions for 3X3
..0......0......0......0......0......0......0......0......0......0......0
..0.1....1.2....1.2....1.1....1.2....1.2....1.1....1.0....0.1....1.2....1.1
..2.2.0..1.0.2..0.3.3..2.0.0..2.3.4..2.0.0..2.2.3..2.1.3..2.3.0..2.3.1..2.0.1
		

A194539 Number of lower triangles of an n X n 0..7 array with new values introduced in row major order 0..7 and no element equal to more than one horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 132, 68106, 703256449, 108504879480483, 153378412416345530447
Offset: 1

Views

Author

R. H. Hardin Aug 28 2011

Keywords

Comments

Column 7 of A194540

Examples

			Some solutions for 3X3
..0......0......0......0......0......0......0......0......0......0......0
..1.1....1.1....1.0....1.2....0.1....1.2....1.2....1.2....0.1....1.2....1.2
..2.2.0..0.2.0..0.2.3..1.3.3..2.3.1..0.3.4..1.3.2..2.0.3..2.2.1..0.3.2..0.1.2
		
Showing 1-7 of 7 results.