cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194544 Total sum of repeated parts in all partitions of n.

Original entry on oeis.org

0, 0, 2, 3, 10, 14, 33, 46, 87, 125, 208, 291, 461, 633, 942, 1292, 1851, 2491, 3484, 4629, 6321, 8326, 11143, 14513, 19168, 24720, 32185, 41193, 53030, 67297, 85830, 108116, 136651, 171040, 214462, 266731, 332197, 410730, 508201, 625082, 768920, 940938
Offset: 0

Views

Author

Omar E. Pol, Nov 19 2011

Keywords

Examples

			For n = 6 we have:
--------------------------------------
.                          Sum of
Partitions             repeated parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 6
4 + 2 ...................... 0
2 + 2 + 2 .................. 6
5 + 1 ...................... 0
3 + 2 + 1 .................. 0
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 6
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
--------------------------------------
Total ..................... 33
So a(6) = 33.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local h, j, t;
          if n<0 then [0, 0]
        elif n=0 then [1, 0]
        elif i<1 then [0, 0]
        else h:= [0, 0];
             for j from 0 to iquo(n, i) do
               t:= b(n-i*j, i-1);
               h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*i*j)]
             od; h
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{h, j, t}, Which [n<0, {0, 0}, n==0, {1, 0}, i<1, {0, 0}, True, h = {0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[j<2, 0, t[[1]]* i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
    Table[Total[Flatten[Select[Flatten[Split/@IntegerPartitions[n],1], Length[ #]> 1&]]],{n,0,50}] (* Harvey P. Dale, Jan 24 2019 *)

Formula

a(n) = A066186(n) - A103628(n), n >= 1.
a(n) ~ exp(sqrt(2*n/3)*Pi) * (1/(4*sqrt(3))-3*sqrt(3)/(8*Pi^2)) * (1 - Pi*(135+2*Pi^2)/(24*(2*Pi^2-9)*sqrt(6*n))). - Vaclav Kotesovec, Nov 05 2016

Extensions

More terms from Alois P. Heinz, Nov 20 2011