A194544 Total sum of repeated parts in all partitions of n.
0, 0, 2, 3, 10, 14, 33, 46, 87, 125, 208, 291, 461, 633, 942, 1292, 1851, 2491, 3484, 4629, 6321, 8326, 11143, 14513, 19168, 24720, 32185, 41193, 53030, 67297, 85830, 108116, 136651, 171040, 214462, 266731, 332197, 410730, 508201, 625082, 768920, 940938
Offset: 0
Keywords
Examples
For n = 6 we have: -------------------------------------- . Sum of Partitions repeated parts -------------------------------------- 6 .......................... 0 3 + 3 ...................... 6 4 + 2 ...................... 0 2 + 2 + 2 .................. 6 5 + 1 ...................... 0 3 + 2 + 1 .................. 0 4 + 1 + 1 .................. 2 2 + 2 + 1 + 1 .............. 6 3 + 1 + 1 + 1 .............. 3 2 + 1 + 1 + 1 + 1 .......... 4 1 + 1 + 1 + 1 + 1 + 1 ...... 6 -------------------------------------- Total ..................... 33 So a(6) = 33.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; local h, j, t; if n<0 then [0, 0] elif n=0 then [1, 0] elif i<1 then [0, 0] else h:= [0, 0]; for j from 0 to iquo(n, i) do t:= b(n-i*j, i-1); h:= [h[1]+t[1], h[2]+t[2]+`if`(j<2, 0, t[1]*i*j)] od; h fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Nov 20 2011
-
Mathematica
b[n_, i_] := b[n, i] = Module[{h, j, t}, Which [n<0, {0, 0}, n==0, {1, 0}, i<1, {0, 0}, True, h = {0, 0}; For[j=0, j <= Quotient[n, i], j++, t = b[n - i*j, i-1]; h = {h[[1]] + t[[1]], h[[2]] + t[[2]] + If[j<2, 0, t[[1]]* i*j]}]; h]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *) Table[Total[Flatten[Select[Flatten[Split/@IntegerPartitions[n],1], Length[ #]> 1&]]],{n,0,50}] (* Harvey P. Dale, Jan 24 2019 *)
Formula
a(n) ~ exp(sqrt(2*n/3)*Pi) * (1/(4*sqrt(3))-3*sqrt(3)/(8*Pi^2)) * (1 - Pi*(135+2*Pi^2)/(24*(2*Pi^2-9)*sqrt(6*n))). - Vaclav Kotesovec, Nov 05 2016
Extensions
More terms from Alois P. Heinz, Nov 20 2011