A194549 Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order.
1, 1, 2, 0, 3, 1, 4, -1, 2, 1, 5, 0, 3, 2, 6, -2, 1, 0, 4, 3, 2, 7, -1, 2, 1, 5, 0, 4, 3, 8, -3, 0, -1, 3, 2, 1, 6, 1, 5, 4, 3, 9, -2, 1, 0, 4, -1, 3, 2, 7, 2, 1, 6, 5, 4, 10, -4, -1, -2, 2, 1, 0, 5, 0, 4, 3, 2, 8, -1, 3, 2, 7, 1, 6, 5, 4, 11, -3, 0, -1, 3, -2
Offset: 1
Examples
Written as a triangle: 1; 1; 2; 0,3; 1,4; -1,2,1,5; 0,3,2,6; -2,1,0,4,3,2,7; -1,2,1,5,0,4,3,8; -3,0,-1,3,2,1,6,1,5,4,3,9; -2,1,0,4,-1,3,2,7,2,1,6,5,4,10; -4,-1,-2,2,1,0,5,0,4,3,2,8,-1,3,2,7,1,6,5,4,11;
Links
- Alois P. Heinz, Rows n = 1..33, flattened
Crossrefs
Programs
-
Maple
T:= proc(n) local b, l; b:= proc(n, i, t) if n=0 then l:=l, i-t elif i>n then else b(n-i, i, t+1); b(n, i+1, t) fi end; if n<2 then 1 else l:= NULL; b(n, 2, 0); l fi end: seq(T(n), n=1..13); # Alois P. Heinz, Dec 20 2011
-
Mathematica
T[n_] := Module[{b, l}, b[n0_, i_, t_] := If[n0 == 0, l = Append[l, i-t], If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; If[n<2, {1}, l = {}; b[n, 2, 0]; l]]; Table[T[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Dec 20 2011