A209616
Sum of positive Dyson's ranks of all partitions of n.
Original entry on oeis.org
0, 1, 2, 4, 7, 12, 18, 29, 42, 63, 89, 128, 176, 246, 333, 453, 603, 807, 1058, 1393, 1807, 2346, 3011, 3867, 4915, 6248, 7879, 9926, 12421, 15529, 19297, 23954, 29585, 36486, 44802, 54937, 67096, 81831, 99459, 120700, 146026, 176410, 212512, 255636, 306734
Offset: 1
For n = 5 we have:
--------------------------
Partitions Dyson's
of 5 rank
--------------------------
5 5 - 1 = 4
4+1 4 - 2 = 2
3+2 3 - 2 = 1
3+1+1 3 - 3 = 0
2+2+1 2 - 3 = -1
2+1+1+1 2 - 4 = -2
1+1+1+1+1 1 - 5 = -4
--------------------------
The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- G. E. Andrews, S. H. G. Chan, and B. Kim, The odd moments of ranks and cranks (See the function R_1), Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91.
- F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
- Frank Garvan, Dyson's rank function and Andrews's SPT-function
-
# Maple program based on Theorem 1 of Andrews-Chan-Kim:
M:=101;
qinf:=mul(1-q^i,i=1..M);
qinf:=series(qinf,q,M);
R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
R1:=series(R1/qinf,q,M);
seriestolist(%); # N. J. A. Sloane, Sep 04 2012
-
M = 101;
qinf = Product[1-q^i, {i, 1, M}];
qinf = Series[qinf, {q, 0, M}];
R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
R1 = Series[R1/qinf, {q, 0, M}];
CoefficientList[R1, q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
-
my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ Seiichi Manyama, May 21 2023
A208478
Triangle read by rows: T(n,k) = number of partitions of n with positive k-th rank.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 1, 5, 2, 4, 4, 2, 1, 6, 3, 5, 6, 4, 2, 1, 10, 5, 7, 9, 7, 4, 2, 1, 13, 7, 9, 11, 11, 7, 4, 2, 1, 19, 11, 12, 15, 16, 12, 7, 4, 2, 1, 25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1, 35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so row 4 lists 2, 1, 2, 1.
Triangle begins:
0;
1, 1;
1, 1, 1;
2, 1, 2, 1;
3, 1, 3, 2, 1;
5, 2, 4, 4, 2, 1;
6, 3, 5, 6, 4, 2, 1;
10, 5, 7, 9, 7, 4, 2, 1;
13, 7, 9, 11, 11, 7, 4, 2, 1;
19, 11, 12, 15, 16, 12, 7, 4, 2, 1;
25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1;
35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1;
...
Cf.
A063995,
A105805,
A181187,
A194547,
A194549,
A195822,
A208482,
A208483,
A209616,
A330368,
A330369,
A330370.
A208482
Triangle read by rows: T(n,k) = sum of positive k-th ranks of all partitions of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 4, 1, 2, 1, 7, 1, 3, 2, 1, 12, 2, 5, 4, 2, 1, 18, 3, 6, 6, 4, 2, 1, 29, 6, 9, 10, 7, 4, 2, 1, 42, 9, 11, 13, 11, 7, 4, 2, 1, 63, 16, 15, 19, 17, 12, 7, 4, 2, 1, 89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1, 128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The sums of positive k-th ranks of the partitions of 4 are 4, 1, 2, 1 so row 4 lists 4, 1, 2, 1.
Triangle begins:
0;
1, 1;
2, 1, 1;
4, 1, 2, 1;
7, 1, 3, 2, 1;
12, 2, 5, 4, 2, 1;
18, 3, 6, 6, 4, 2, 1;
29, 6, 9, 10, 7, 4, 2, 1;
42, 9, 11, 13, 11, 7, 4, 2, 1;
63, 16, 15, 19, 17, 12, 7, 4, 2, 1;
89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1;
128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1;
Terms a(1)-a(22) confirmed and additional terms added by
John W. Layman, Mar 10 2012
A194547
Triangle read by rows: T(n,k) = Dyson's rank of the k-th partition of n, with partitions in lexicographic order.
Original entry on oeis.org
0, -1, 1, -2, 0, 2, -3, -1, 1, 0, 3, -4, -2, 0, -1, 2, 1, 4, -5, -3, -1, -2, 1, 0, 3, -1, 2, 1, 5, -6, -4, -2, -3, 0, -1, 2, -2, 1, 0, 4, 0, 3, 2, 6, -7, -5, -3, -4, -1, -2, 1, -3, 0, -1, 3, -1, 2, 1, 5, -2, 1, 0, 4, 3, 2, 7, -8, -6, -4, -5, -2, -3, 0, -4, -1
Offset: 1
Written as a triangle:
0;
-1,1;
-2,0,2;
-3,-1,1,0,3;
-4,-2,0,-1,2,1,4;
-5,-3,-1,-2,1,0,3,-1,2,1,5;
-6,-4,-2,-3,0,-1,2,-2,1,0,4,0,3,2,6;
-7,-5,-3,-4,-1,-2,1,-3,0,-1,3,-1,2,1,5,-2,1,0,4,3,2,7;
-
T:= proc(n) local b, l;
b:= proc(n, i, t)
if n=0 then l:=l, i-t
elif i>n then
else b(n-i, i, t+1); b(n, i+1, t)
fi
end;
l:= NULL; b(n, 1, 0); l
end:
seq(T(n), n=1..10); # Alois P. Heinz, Dec 22 2011
-
T[n_] := Module[{b, l}, b[n0_, i_, t_] := If [n0==0, l = Append[l, i-t], If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]]; l = {}; b[n, 1, 0]; l];
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
A194548
Triangle read by rows: T(n,k) = number of parts in the k-th partition of n that does not contain 1 as a part, with partitions in lexicographic order.
Original entry on oeis.org
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 3, 3, 2, 2, 2, 1, 6, 5, 5, 4, 4, 4, 3, 4, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1
Offset: 1
Written as a triangle:
0;
1;
1;
2,1;
2,1;
3,2,2,1;
3,2,2,1;
4,3,3,2,2,2,1;
4,3,3,2,3,2,2,1;
5,4,4,3,3,3,2,3,2,2,2,1;
5,4,4,3,4,3,3,2,3,3,2,2,2,1;
6,5,5,4,4,4,3,4,3,3,3,2,4,3,3,2,3,2,2,2,1;
6,5,5,4,5,4,4,3,4,4,3,3,3,2,4,3,3,3,2,3,2,2,2,1;
-
T:= proc(n) local b, l;
b:= proc(n, i, t)
if n=0 then l:=l, t
elif i>n then
else b(n-i, i, t+1); b(n, i+1, t)
fi
end;
if n<2 then 0 else l:= NULL; b(n, 2, 0); l fi
end:
seq(T(n), n=1..15); # Alois P. Heinz, Dec 19 2011
-
T[n_] := Module[{b, l}, b[n0_, i_, t_] :=
If[n0==0, l = Append[l, t],
If[i>n0, , b[n0-i, i, t+1]; b[n0, i+1, t]]];
If[n<2, {0}, l = {}; b[n, 2, 0]; l]];
Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
A194546
Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 4, 1, 2, 3, 2, 4, 3, 5, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9
Offset: 1
For n = 5 the partitions of 5 in colexicographic order are:
1+1+1+1+1
2+1+1+1
3+1+1
2+2+1
4+1
3+2
5
so the fifth row is the largest in each partition: 1,2,3,2,4,3,5
Triangle begins:
1;
1,2;
1,2,3;
1,2,3,2,4;
1,2,3,2,4,3,5;
1,2,3,2,4,3,5,2,4,3,6;
1,2,3,2,4,3,5,2,4,3,6,3,5,4,7;
1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8;
...
Let y be the n-th integer partition in colexicographic order (
A211992):
- The maximum of y is a(n).
- The Heinz number of y is
A334437(n).
Lexicographically ordered reversed partitions are
A026791.
Reverse-colexicographically ordered partitions are
A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are
A036036.
Reverse-lexicographically ordered partitions are
A080577.
Lexicographically ordered partitions are
A193073.
-
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* Gus Wiseman, May 31 2020 *)
A330368
Irregular triangle read by rows in which row n lists the ranks of the partitions of n in nonincreasing order.
Original entry on oeis.org
0, 1, -1, 2, 0, -2, 3, 1, 0, -1, -3, 4, 2, 1, 0, -1, -2, -4, 5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5, 6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0, -1, -1, -1, -2, -2, -3, -3, -4, -5, -7, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -4, -4, -5, -6, -8
Offset: 1
Triangle begins:
0;
1, -1;
2, 0, -2;
3, 1, 0, -1, -3;
4, 2, 1, 0, -1, -2, -4;
5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5;
6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6;
...
A330374
Triangle read by rows: T(n,k) is the number of partitions of n whose absolute value of Dyson's rank is equal to k, with 0 <= k < n.
Original entry on oeis.org
1, 0, 2, 1, 0, 2, 1, 2, 0, 2, 1, 2, 2, 0, 2, 1, 4, 2, 2, 0, 2, 3, 2, 4, 2, 2, 0, 2, 2, 6, 4, 4, 2, 2, 0, 2, 4, 6, 6, 4, 4, 2, 2, 0, 2, 4, 10, 6, 8, 4, 4, 2, 2, 0, 2, 6, 10, 12, 6, 8, 4, 4, 2, 2, 0, 2, 7, 16, 12, 12, 8, 8, 4, 4, 2, 2, 0, 2, 11, 16, 18, 14, 12, 8, 8, 4, 4, 2, 2, 0, 2, 11, 26, 20, 20, 14, 14
Offset: 1
Triangle begins:
--------------------------------------------------------------------
n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--------------------------------------------------------------------
[ 1] 1;
[ 2] 0, 2;
[ 3] 1, 0, 2;
[ 4] 1, 2, 0, 2;
[ 5] 1, 2, 2, 0, 2;
[ 6] 1, 4, 2, 2, 0, 2;
[ 7] 3, 2, 4, 2, 2, 0, 2;
[ 8] 2, 6, 4, 4, 2, 2, 0, 2;
[ 9] 4, 6, 6, 4, 4, 2, 2, 0, 2;
[10] 4, 10, 6, 8, 4, 4, 2, 2, 0, 2;
[11] 6, 10, 12, 6, 8, 4, 4, 2, 2, 0, 2;
[12] 7, 16, 12, 12, 8, 8, 4, 4, 2, 2, 0, 2;
[13] 11, 16, 18, 14, 12, 8, 8, 4, 4, 2, 2, 0, 2;
[14] 11, 26, 20, 20, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2;
[15] 16, 28, 30, 22, 22, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2;
...
Showing 1-8 of 8 results.
Comments