A194555 Decimal expansion of the real part of i^(e^Pi), where i = sqrt(-1).
2, 1, 9, 2, 0, 4, 8, 9, 4, 9, 0, 0, 8, 7, 6, 1, 3, 2, 8, 9, 0, 7, 6, 7, 9, 4, 9, 7, 4, 4, 6, 5, 7, 2, 6, 5, 8, 7, 3, 6, 9, 2, 6, 4, 6, 1, 1, 9, 0, 7, 9, 6, 3, 9, 2, 6, 4, 8, 5, 0, 9, 2, 1, 7, 3, 8, 9, 3, 1, 7, 0, 7, 6, 5, 2, 1, 9, 9, 7, 4, 7, 2, 2, 3, 5, 3, 0, 1, 9, 5, 4, 0, 6, 1, 5, 3, 4, 6, 1, 0
Offset: 0
Examples
i^e^Pi = 0.2192048949... - 0.9756788478...*i
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Steven Finch, Errata and Addenda to Mathematical Constants, Jun 23 2012, Section 1.1
- D. Marques and Jonathan Sondow, Schanuel's conjecture and algebraic powers z^w and w^z with z and w transcendental, arXiv:1010.6216 [math.NT], 2010-2011; East-West J. Math., 12 (2010), 75-84.
- Wikipedia, Schanuel's conjecture
Programs
-
Mathematica
RealDigits[ Re[I^E^Pi], 10, 100] // First
-
PARI
real(I^(exp(Pi))) \\ Michel Marcus, Aug 19 2018
Comments