cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073233 Decimal expansion of Pi^Pi.

Original entry on oeis.org

3, 6, 4, 6, 2, 1, 5, 9, 6, 0, 7, 2, 0, 7, 9, 1, 1, 7, 7, 0, 9, 9, 0, 8, 2, 6, 0, 2, 2, 6, 9, 2, 1, 2, 3, 6, 6, 6, 3, 6, 5, 5, 0, 8, 4, 0, 2, 2, 2, 8, 8, 1, 8, 7, 3, 8, 7, 0, 9, 3, 3, 5, 9, 2, 2, 9, 3, 4, 0, 7, 4, 3, 6, 8, 8, 8, 1, 6, 9, 9, 9, 0, 4, 6, 2, 0, 0, 7, 9, 8, 7, 5, 7, 0, 6, 7, 7, 4, 8, 5, 4, 3, 6, 8, 1
Offset: 2

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Comments

A weak form of Schanuel's Conjecture implies that Pi^Pi is transcendental--see Marques and Sondow (2012).

Examples

			36.4621596072079117709908260226...
		

Crossrefs

Cf. A000796 (Pi), A073234 (Pi^Pi^Pi), A073237 (ceil(Pi^Pi^...^Pi), n Pi's), A073238 (Pi^(1/Pi)), A073239 ((1/Pi)^Pi), A073240 ((1/Pi)^(1/Pi)), A073243 (limit of (1/Pi)^(1/Pi)^...^(1/Pi)), A073236 (Pi analog of A004002).
Cf. A073226 (e^e).
Cf. A049006 (i^i), A116186 (real part of i^i^i).
Cf. A194555 (real part of i^e^Pi).

Programs

  • Mathematica
    RealDigits[N[Pi^Pi,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    Pi^Pi
    
  • PARI
    { default(realprecision, 20080); x=Pi^Pi/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073233.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009

A194348 Decimal expansion of sqrt(2)^sqrt(2)^sqrt(2).

Original entry on oeis.org

1, 7, 6, 0, 8, 3, 9, 5, 5, 5, 8, 8, 0, 0, 2, 8, 0, 9, 0, 7, 5, 6, 6, 4, 9, 8, 9, 5, 6, 3, 8, 3, 7, 2, 7, 4, 8, 0, 7, 9, 8, 0, 4, 0, 9, 4, 3, 1, 8, 5, 0, 9, 9, 0, 4, 6, 4, 6, 3, 8, 8, 2, 2, 5, 0, 5, 3, 4, 2, 8, 4, 1, 6, 8, 7, 5, 4, 5, 4, 6, 5, 8, 1, 1, 9, 0, 4, 6, 3, 5, 1, 1, 5, 2, 6, 3, 0, 5, 9, 8, 4
Offset: 1

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then sqrt(2)^sqrt(2)^sqrt(2) is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			1.76083955588002809075664989563837274807980409431850990464638822505342...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A078333 (decimal expansion of sqrt(2)^sqrt(2)), A194555 (the decimal expansion of the real part of I^e^Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2)^Sqrt(2)^Sqrt(2); // G. C. Greubel, Aug 19 2018
  • Mathematica
    RealDigits[ Sqrt[2]^Sqrt[2]^Sqrt[2], 10, 100] // First
  • PARI
    sqrt(2)^sqrt(2)^sqrt(2) \\ Charles R Greathouse IV, May 14 2014
    
  • PARI
    (x->x^x^x)(sqrt(2)) \\ Charles R Greathouse IV, May 14 2014
    

A194554 Decimal expansion of the absolute value of the imaginary part of i^(e^Pi), where i = sqrt(-1).

Original entry on oeis.org

9, 7, 5, 6, 7, 8, 8, 4, 7, 8, 0, 3, 6, 6, 9, 3, 8, 5, 6, 4, 3, 4, 6, 8, 9, 6, 6, 0, 5, 5, 4, 2, 3, 1, 1, 0, 5, 2, 2, 9, 4, 6, 9, 7, 1, 6, 4, 8, 1, 0, 8, 5, 3, 7, 6, 8, 8, 7, 2, 0, 2, 6, 5, 0, 3, 7, 8, 0, 6, 6, 8, 4, 2, 2, 9, 8, 4, 5, 8, 4, 4, 2, 7, 9, 4, 9, 0, 8, 2, 6, 2, 6, 7, 2, 7, 4, 4, 1, 3, 2
Offset: 0

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then i^e^Pi is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			i^e^Pi = 0.2192048949... - 0.9756788478...*i
		

Crossrefs

Cf. A039661 (decimal expansion of e^Pi), A194555 (real part).

Programs

  • Mathematica
    RealDigits[Im[I^E^Pi], 10, 100] // First
  • PARI
    abs(imag(I^(exp(Pi)))) \\ Michel Marcus, Aug 19 2018
Showing 1-3 of 3 results.