A194580 Nonprime numbers with a sum of nonprime divisors which is a perfect square.
1, 15, 35, 143, 243, 323, 465, 899, 1183, 1386, 1763, 2065, 2352, 3060, 3599, 3612, 3696, 3887, 5183, 5358, 5590, 9889, 10403, 11663, 12337, 12740, 12879, 14329, 14455, 14645, 16401, 19043, 19097, 20835, 22477, 22499, 22678, 23427, 25553
Offset: 1
Keywords
Examples
The divisors of 465 are {1, 3, 5, 15, 31, 93, 155, 465} and the sum of the nonprime divisors 1 + 15 + 93 + 155 + 465 = 729 = 27^2, hence 465 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A023890 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d; end if; end do; a; end proc: for n from 1 do if issqr(A023890(A018252(n))) then print(A018252(n)) ; end if; end do: # R. J. Mathar, Sep 06 2011
-
Mathematica
f[n_] := IntegerQ[Sqrt[Total[Select[Divisors[n], ! PrimeQ[#] &]]]]; Select[Range[25553], ! PrimeQ[#] && f[#] &] (* T. D. Noe, Sep 06 2011 *)
-
PARI
isok(n) = !isprime(n) && issquare(sumdiv(n, d, d*(1-isprime(d)))); \\ Michel Marcus, Aug 25 2019
Comments