cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194580 Nonprime numbers with a sum of nonprime divisors which is a perfect square.

Original entry on oeis.org

1, 15, 35, 143, 243, 323, 465, 899, 1183, 1386, 1763, 2065, 2352, 3060, 3599, 3612, 3696, 3887, 5183, 5358, 5590, 9889, 10403, 11663, 12337, 12740, 12879, 14329, 14455, 14645, 16401, 19043, 19097, 20835, 22477, 22499, 22678, 23427, 25553
Offset: 1

Views

Author

Michel Lagneau, Aug 29 2011

Keywords

Comments

If n is prime, the sum is equal to 1.

Examples

			The divisors of 465 are {1, 3, 5, 15, 31, 93, 155, 465} and the sum of the nonprime divisors 1 + 15 + 93 + 155 + 465 = 729 = 27^2, hence 465 is in the sequence.
		

Crossrefs

Programs

  • Maple
    A023890 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d; end if; end do; a; end proc:
    for n from 1 do if issqr(A023890(A018252(n))) then  print(A018252(n)) ;  end if;
    end do: # R. J. Mathar, Sep 06 2011
  • Mathematica
    f[n_] := IntegerQ[Sqrt[Total[Select[Divisors[n], ! PrimeQ[#] &]]]]; Select[Range[25553], ! PrimeQ[#] && f[#] &] (* T. D. Noe, Sep 06 2011 *)
  • PARI
    isok(n) = !isprime(n) && issquare(sumdiv(n, d, d*(1-isprime(d)))); \\ Michel Marcus, Aug 25 2019

Formula

{A018252(j): A023890(A018252(j)) in A000290}. - R. J. Mathar, Sep 06 2011