A194628 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.
1, 1, 1, 2, 4, 8, 16, 31, 61, 121, 240, 476, 944, 1872, 3712, 7362, 14601, 28958, 57432, 113904, 225904, 448034, 888583, 1762321, 3495200, 6932008, 13748208, 27266738, 54077957, 107252486, 212713209, 421872826, 836697836, 1659417786, 3291113315, 6527245245, 12945446241, 25674625681
Offset: 1
Keywords
Examples
From _Joerg Arndt_, Dec 18 2012: (Start) There are a(6+1)=16 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 5*p(k+1): [ 1] [ 1 1 1 1 1 1 ] [ 2] [ 1 1 1 1 2 ] [ 3] [ 1 1 1 2 1 ] [ 4] [ 1 1 1 3 ] [ 5] [ 1 1 2 1 1 ] [ 6] [ 1 1 2 2 ] [ 7] [ 1 1 3 1 ] [ 8] [ 1 1 4 ] [ 9] [ 1 2 1 1 1 ] [10] [ 1 2 1 2 ] [11] [ 1 2 2 1 ] [12] [ 1 2 3 ] [13] [ 1 3 1 1 ] [14] [ 1 3 2 ] [15] [ 1 4 1 ] [16] [ 1 5 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
Programs
-
Mathematica
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k (r - j), k], {j, 0, Min[n, r]}]]]; a[n_] := b[4n - 3, 1, 5]; Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
-
PARI
/* see A002572, set t=5 */
Formula
a(n) = A294775(n-1,4). - Alois P. Heinz, Nov 08 2017
Extensions
Terms beyond a(20)=113904 added by Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017
Comments