cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294775 Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 1, 2, 4, 7, 9, 1, 1, 1, 1, 2, 4, 8, 13, 16, 1, 1, 1, 1, 2, 4, 8, 15, 25, 28, 1, 1, 1, 1, 2, 4, 8, 16, 29, 48, 50, 1, 1, 1, 1, 2, 4, 8, 16, 31, 57, 92, 89, 1, 1, 1, 1, 2, 4, 8, 16, 32, 61, 112, 176, 159, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 08 2017

Keywords

Examples

			A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16].
A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
  1,  2,  2,  2,  2,  2,  2,  2,  2, ...
  1,  3,  4,  4,  4,  4,  4,  4,  4, ...
  1,  5,  7,  8,  8,  8,  8,  8,  8, ...
  1,  9, 13, 15, 16, 16, 16, 16, 16, ...
  1, 16, 25, 29, 31, 32, 32, 32, 32, ...
  1, 28, 48, 57, 61, 63, 64, 64, 64, ...
		

Crossrefs

Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081.
Main diagonal gives A011782(n-1) for n>0.
Cf. A294746.

Programs

  • Maple
    b:= proc(n, r, k) option remember;
          `if`(n `if`(k=0, 1, b(k*n+1, 1, k+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]];
    A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *)

A194633 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4089, 8176, 16348, 32688, 65360, 130688, 261312, 522496, 1044736, 2088960, 4176896, 8351746, 16699401, 33390622, 66764888, 133497072, 266928752, 533726752, 1067192064, 2133861376, 4266677504, 8531265024
Offset: 1

Views

Author

Jonathan Vos Post, Aug 30 2011

Keywords

Comments

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 10*p(k+1). [Joerg Arndt, Dec 18 2012]
Row 9 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, row 4 being A194628, row 5 being A194629, row 6 being A194630, row 7 being A194631, and row 8 being A194632.

Crossrefs

Programs

  • Mathematica
    b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
    a[n_] := b[9n-8, 1, 10];
    Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
  • PARI
    /* see A002572, set t=10 */

Formula

a(n) = A294775(n-1,9).

Extensions

Added terms beyond a(20)=130688, Joerg Arndt, Dec 18 2012
Invalid empirical g.f. removed by Alois P. Heinz, Nov 08 2017
Showing 1-2 of 2 results.