cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194689 a(n) = Sum_{k=0..n} binomial(n,k)*w(k)*w(n-k) where w() = A000296().

Original entry on oeis.org

1, 0, 2, 2, 14, 42, 222, 1066, 6078, 36490, 238046, 1653610, 12214270, 95361866, 784071966, 6764984362, 61066919230, 575200190986, 5640081557598, 57450510336234, 606773139773054, 6633515763375306, 74950634205257630, 873995513192234410, 10504736507220958142, 129983468625156713354
Offset: 0

Views

Author

N. J. A. Sloane, Sep 01 2011

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 771, Problem 37).

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * BellB[k,2] * 2^(n-k), {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jun 25 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    Q(k) = if (k>N, 1, 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ) );
    gf=1/Q(0);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1-x)))) \\ Seiichi Manyama, Nov 20 2020

Formula

G.f.: 1/Q(0) where Q(k) = 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: 1/Q(0), where Q(k)= 1 - x*k - 2*x^2*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 06 2013
E.g.f.: exp(2*(exp(x) - 1 - x)). - Ilya Gutkovskiy, Apr 07 2018
a(0) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-1-k). - Seiichi Manyama, Nov 20 2020
a(n) ~ 4 * n^(n-2) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-2)). - Vaclav Kotesovec, Jun 26 2022