cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194724 Number of quaternary words either empty or beginning with the first character of the alphabet, that can be built by inserting n doublets into the initially empty word.

Original entry on oeis.org

1, 1, 7, 58, 523, 4966, 48838, 492724, 5068915, 52955950, 560198962, 5987822380, 64563867454, 701383563388, 7668869344108, 84326618668648, 931894610845123, 10344218506421758, 115280448164645818, 1289346114476360188, 14467472108268263818, 162816535672067515828
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2011

Keywords

Examples

			a(2) = 7: aaaa, aabb, aacc, aadd, abba, acca, adda (with quaternary alphabet {a,b,c,d}).
		

Crossrefs

Column k=4 of A183134.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(binomial(2*n, j) *(n-j) *3^j, j=0..n-1)/n):
    seq(a(n), n=0..25);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [1, 1, 7][n+1],
          ((28*n-18)*a(n-1) -(192*n-288)*a(n-2))/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    CoefficientList[Series[3/4+3/(2(2+4Sqrt[1-12x])),{x,0,30}],x] (* Harvey P. Dale, Sep 30 2012 *)

Formula

G.f.: 3/4 + 3/(2*(2+4*sqrt(1-12*x))).
a(0) = 1, a(n) = 1/n * Sum_{j=0..n-1} C(2*n,j)*(n-j)*3^j for n>0.
a(n) ~ 3 * 12^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 07 2014
Conjecture: n*a(n) +2*(-14*n+9)*a(n-1) +96*(2*n-3)*a(n-2)=0. - R. J. Mathar, Mar 14 2015