A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).
2, 2, 12, 20, 10, 42, 56, 24, 90, 110, 44, 156, 182, 70, 240, 272, 102, 342, 380, 140, 462, 506, 184, 600, 650, 234, 756, 812, 290, 930, 992, 352, 1122, 1190, 420, 1332, 1406, 494, 1560, 1640, 574, 1806, 1892, 660, 2070, 2162, 752, 2352, 2450, 850, 2652, 2756, 954, 2970, 3080, 1064, 3306, 3422, 1180, 3660
Offset: 0
Links
- OEIS Wiki, Autosequence.
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Programs
-
Mathematica
c = Table[1/9 (7 n + 7 n^2 + 2 n Cos[2 n *Pi/3] + 2 n^2 Cos[2 n *Pi/3] + 2 Sqrt[3] n Sin[2 n *Pi/3] + 2 Sqrt[3] n^2 Sin[2 n *Pi/3]), {n, 1, 50}] (* Roger Bagula, Mar 25 2012 *) a[n_] := (n+1) * Numerator[(n+2)/3]; Array[a, 60, 0] (* Amiram Eldar, Sep 17 2023 *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{2,2,12,20,10,42,56,24,90},60] (* Harvey P. Dale, May 15 2025 *)
Formula
a(3*n) = (3*n+1)*(3*n+2), a(3*n+1) = (n+1)*(3*n+2), a(3*n+2) = 3*(n+1)*(3*n+4).
G.f.: 2*(1+x+6*x^2+7*x^3+2*x^4+3*x^5+x^6)/(1-x^3)^3. - Jean-François Alcover, Nov 11 2016
a(n+2) = 2 * A306368(n) for n >= 0. - Joerg Arndt, Aug 25 2023
a(n) = (n+1) * A051176(n+2) for n >= 0. - Paul Curtz, Sep 13 2023
Sum_{n>=0} 1/a(n) = 1 + log(3) - Pi/(3*sqrt(3)). - Amiram Eldar, Sep 17 2023
Comments