A194787
E.g.f. A(x) = G(x)^G(x) where G(x) = 1 + x*G(x)^G(x) is the e.g.f. of A194786.
Original entry on oeis.org
1, 1, 4, 27, 272, 3630, 60714, 1221864, 28779120, 776965680, 23662145160, 802640076480, 30014281406856, 1226796674341056, 54417859649294400, 2603641529587553280, 133660822187138916480, 7328549084322230968320, 427437378614564995967424
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3630*x^5/5! +...
where A(x) = G(x)^G(x) and G(x) is the e.g.f. of A194786:
G(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 108*x^4/4! + 1360*x^5/5! +...
A176118
The n-th derivative of 1/x^x, evaluated at x=1.
Original entry on oeis.org
1, -1, 0, 3, -8, 10, 6, -42, -160, 2952, -27720, 253440, -2553528, 28562664, -349272000, 4618376280, -65615072640, 996952226880, -16133983959744, 277093189849536, -5033937521116800, 96451913892983040, -1943937259314019200, 41112770486238380160
Offset: 0
Jacob Parr (jacobparr1(AT)gmail.com), Apr 09 2010
E.g.f.: A(x) = 1 - x + 3*x^3/3! - 8*x^4/4! + 10*x^5/5! + 6*x^6/6! - 42*x^7/7! - 160*x^8/8! + 2952*x^9/9! - 27720*x^10/10! + 253440*x^11/11! + ...
The e.g.f. as a power series with reduced fractional coefficients begins
A(x) = 1 - x + 1/2x^3 - 1/3x^4 + 1/12x^5 + 1/120x^6 - 1/120x^7 - 1/252x^8 + 41/5040x^9 - 11/1440x^10 + 2/315x^11 - 106397/19958400x^12 + ...
-
1, seq(simplify(subs(x = 1, diff(x^(-x), `$`(x, n)))), n = 1 .. 22); # Emeric Deutsch, Apr 14 2010
a:= n-> n! *coeftayl(x^(-x), x=1, n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 18 2012
-
NestList[Factor[D[#1, x]] &, 1/x^x, 22] /. (x -> 1) (* Robert G. Wilson v, Feb 03 2013 *)
A366228
Expansion of e.g.f. A(x) satisfying A(x) = 1 + Integral A(x)^A(x) dx.
Original entry on oeis.org
1, 1, 1, 3, 12, 68, 473, 3998, 39327, 443599, 5629807, 79486044, 1235018598, 20946691457, 385025599130, 7624623236381, 161823815625933, 3664505951884255, 88189911547566082, 2247691180645108608, 60480432646998315279, 1713328345952593367876, 50970518521542636421145
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 68*x^5/5! + 473*x^6/6! + 3998*x^7/7! + 39327*x^8/8! + 443599*x^9/9! + 5629807*x^10/10! + ...
where A(x) = 1 + Integral A(x)^A(x) dx.
RELATED SERIES.
A(x)^A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 68*x^4/4! + 473*x^5/5! + 3998*x^6/6! + 39327*x^7/7! + 443599*x^8/8! + ...
log(A(x)) = x + 2*x^3/3! + 3*x^4/4! + 32*x^5/5! + 155*x^6/6! + 1575*x^7/7! + 13573*x^8/8! + 160756*x^9/9! + 1938288*x^10/10! + ...
A(x)^(A(x) - 1) = 1 + 2*x^2/2! + 3*x^3/3! + 32*x^4/4! + 155*x^5/5! + 1575*x^6/6! + 13573*x^7/7! + ...
-
{a(n) = my(A=1); for(i=0, n, A = 1 + intformal( A^A +x*O(x^n) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=1); for(i=0, n, A = exp( intformal( A^(A-1) +x*O(x^n) ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments