A005727
n-th derivative of x^x at x=1. Also called Lehmer-Comtet numbers.
Original entry on oeis.org
1, 1, 2, 3, 8, 10, 54, -42, 944, -5112, 47160, -419760, 4297512, -47607144, 575023344, -7500202920, 105180931200, -1578296510400, 25238664189504, -428528786243904, 7700297625889920, -146004847062359040, 2913398154375730560, -61031188196889482880
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, table at foot of page.
- G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..400 (first 101 terms from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), section 36.5, "The function x^x"
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y=xxy=x^x, Rocky Mountain J. Math. 26(2) 1996.
- R. K. Guy, Letter to N. J. A. Sloane, 1986
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- G. H. Hardy, A Course of Pure Mathematics, Cambridge, The University Press, 1908.
- D. H. Lehmer, Numbers associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, p. 461.
- R. R. Patterson and G. Suri, The derivatives of x^x, date unknown. Preprint. [Annotated scanned copy]
-
A005727 := proc(n) option remember; `if`(n=0, 1, A005727(n-1)+add((-1)^(n-k)*(n-2-k)!*binomial(n-1, k)*A005727(k), k=0..n-2)) end:
seq(A005727(n), n=0..23); # Mélika Tebni, May 22 2022
-
NestList[ Factor[ D[ #1, x ] ]&, x^x, n ] /. (x->1)
Range[0, 22]! CoefficientList[ Series[(1 + x)^(1 + x), {x, 0, 22}], x] (* Robert G. Wilson v, Feb 03 2013 *)
-
a(n)=if(n<0,0,n!*polcoeff((1+x+x*O(x^n))^(1+x),n))
A008296
Triangle of Lehmer-Comtet numbers of the first kind.
Original entry on oeis.org
1, 1, 1, -1, 3, 1, 2, -1, 6, 1, -6, 0, 5, 10, 1, 24, 4, -15, 25, 15, 1, -120, -28, 49, -35, 70, 21, 1, 720, 188, -196, 49, 0, 154, 28, 1, -5040, -1368, 944, 0, -231, 252, 294, 36, 1, 40320, 11016, -5340, -820, 1365, -987, 1050, 510, 45, 1, -362880, -98208, 34716, 9020, -7645, 3003, -1617, 2970, 825, 55, 1, 3628800
Offset: 1
Triangle begins:
1;
1, 1;
-1, 3, 1;
2, -1, 6, 1;
-6, 0, 5, 10, 1;
24, 4, -15, 25, 15, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139.
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Gould, A Set of Polynomials Associated with the Higher Derivatives of y = x^x, Rocky Mountain J. Math. Volume 26, Number 2 (1996), 615-625.
- Tian-Xiao He and Yuanziyi Zhang, Centralizers of the Riordan Group, arXiv:2105.07262 [math.CO], 2021.
- D. H. Lehmer, Numbers Associated with Stirling Numbers and x^x, Rocky Mountain J. Math., 15(2) 1985, pp. 461-475.
-
for n from 1 to 20 do for k from 1 to n do
printf(`%d,`, add(binomial(l,k)*k^(l-k)*Stirling1(n,l), l=k..n)) od: od:
# second program:
A008296 := proc(n, k) option remember; if k=1 and n>1 then (-1)^n*(n-2)! elif n=k then 1 else (n-1)*procname(n-2, k-1) + (k-n+1)*procname(n-1, k) + procname(n-1, k-1) end if end proc:
seq(print(seq(A008296(n, k), k=1..n)), n=1..7); # Mélika Tebni, Aug 22 2021
-
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n-2)!;
a[n_, n_] = 1; a[n_, k_] := a[n, k] = (n-1) a[n-2, k-1] + a[n-1, k-1] + (k-n+1) a[n-1,k]; Flatten[Table[a[n, k], {n, 1, 12}, {k, 1, n}]][[1 ;; 67]]
(* Jean-François Alcover, Apr 29 2011 *)
-
{T(n, k) = if( k<1 || k>n, 0, n! * polcoeff(((1 + x) * log(1 + x + x * O(x^n)))^k / k!, n))}; /* Michael Somos, Nov 15 2002 */
-
# uses[bell_matrix from A264428]
# Adds 1, 0, 0, 0, ... as column 0 at the left side of the triangle.
bell_matrix(lambda n: (-1)^(n-1)*factorial(n-1) if n>1 else 1, 7) # Peter Luschny, Jan 16 2016
A354795
Triangle read by rows. The matrix inverse of A354794. Equivalently, the Bell transform of cfact(n) = -(n - 1)! if n > 0 and otherwise 1/(-n)!.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, -1, -3, 1, 0, -2, -1, -6, 1, 0, -6, 0, 5, -10, 1, 0, -24, 4, 15, 25, -15, 1, 0, -120, 28, 49, 35, 70, -21, 1, 0, -720, 188, 196, 49, 0, 154, -28, 1, 0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1, 0, -40320, 11016, 5340, -820, -1365, -987, -1050, 510, -45, 1
Offset: 0
Triangle T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, -1, 1]
[3] [0, -1, -3, 1]
[4] [0, -2, -1, -6, 1]
[5] [0, -6, 0, 5, -10, 1]
[6] [0, -24, 4, 15, 25, -15, 1]
[7] [0, -120, 28, 49, 35, 70, -21, 1]
[8] [0, -720, 188, 196, 49, 0, 154, -28, 1]
[9] [0, -5040, 1368, 944, 0, -231, -252, 294, -36, 1]
- Louis Comtet, Advanced Combinatorics. Reidel, Dordrecht, 1974, p. 139-140.
Cf.
A354794 (matrix inverse),
A176118 (row sums),
A005727 (alternating row sums),
A045406 (column 2),
A347276 (column 3),
A345651 (column 4),
A298511 (central),
A008296 (variant),
A159333,
A264428,
A159075,
A006963,
A354796.
-
# The function BellMatrix is defined in A264428.
cfact := n -> ifelse(n = 0, 1, -(n - 1)!): BellMatrix(cfact, 10);
# Alternative:
t := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = n then 1 else (n-1)*t(n-2, k-1) - (n-1-k)*t(n-1, k) + t(n-1, k-1) fi end:
T := (n, k) -> (-1)^(n-k)*t(n, k):
seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
# Using the e.g.f.:
egf := (1 - x)^(t*(x - 1)):
ser := series(egf, x, 11): coeffx := n -> coeff(ser, x, n):
row := n -> seq(n!*coeff(coeffx(n), t, k), k=0..n):
seq(print(row(n)), n = 0..9);
-
cfact[n_] := If[n == 0, 1, -(n - 1)!];
R := Range[0, 10]; cf := Table[cfact[n], {n, R}];
Table[BellY[n, k, cf], {n, R}, {k, 0, n}] // Flatten
A211205
n-th derivative of x^(x^(x^(x^(x^x)))) at x=1.
Original entry on oeis.org
1, 1, 2, 9, 56, 480, 5094, 60494, 823528, 12365424, 206078880, 3745686912, 74083090872, 1579529362944, 36165466533000, 884104045301640, 22992315801392064, 633547543117707648, 18439576158792912192, 565162707747635408448, 18194047307015185486080
Offset: 0
Cf.
A005727,
A008405,
A176118,
A179230,
A179405,
A179505,
A215522,
A215524,
A215629,
A215643,
A215691,
A215704,
A215705,
A215706,
A215707,
A215708,
A215709,
A215710,
A215522,
A295106.
-
a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^(x^(x^x))))), x, n+1), x, n):
seq(a(n), n=0..20);
-
NestList[ Factor[ D[#1, x]] &, x^x^x^x^x^x, 9] /. (x -> 1) (* or quicker *)
Range[0, 20]! CoefficientList[ Series[(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x)^(1 + x), {x, 0, 20}], x]
A350759
a(n) = Sum_{k=0..n} (-1)^k*A345652(k)*Stirling1(n, k).
Original entry on oeis.org
1, 0, -1, 1, 1, -4, 1, 29, -167, 1000, -7989, 75857, -794639, 9058180, -111944923, 1492748581, -21369667087, 326932765840, -5323818187817, 91947960224097, -1678914212753599, 32317295442288844, -654084630476955479, 13886774070229667213
Offset: 0
a(9) = -Sum_{k=0..7} a(k)*A238363(8, k).
a(9) = -(1*(-5040) + 0*(5760) - 1*(-3360) + 1*(1344) + 1*(-420) - 4*(112) + 1*(-28) + 29*(8)) = 1000.
E.g.f.: 1 - x^2/2! + x^3/3! + x^4/4! - 4*x^5/5! + x^6/6! + 29*x^7/7! - 167*x^8/8! + 1000*x^9/9! + ...
-
b := proc(n) option remember; `if`(n=0, 1, add((n-1)*binomial(n-2, k)*(-1)^(n-1-k)*b(k), k=0..n-2)) end:
a := n-> add((-1)^k*b(k)*Stirling1(n, k), k=0..n):
seq(a(n), n=0..23);
# Second program:
a := proc(n) option remember; `if`(n=0, 1, add((n-2-k)!*binomial(n-1, k)*(-1)^(n-1-k)*a(k), k=0..n-2)) end:
seq(a(n), n=0..23);
# Third program:
a := series(exp(-1+(1+x)*(1-log(1+x))), x=0, 24):
seq(n!*coeff(a, x, n), n=0..23);
# Fourth program:
A350759 := n-> add(binomial(n, k)*(n-k)!*coeftayl(x^(-x), x=1, n-k), k=0..n):
seq(A350759 (n), n=0..23); # Mélika Tebni, Mar 31 2022
-
CoefficientList[Series[Exp[-1+(1+x)*(1-Log[1+x])], {x, 0, 23}], x] * Range[0, 23]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(-1 + (1 + x)*(1 - log(1 + x))))) \\ Michel Marcus, Jan 14 2022
-
from math import comb, factorial
def a(n):
return 1 if n == 0 else sum([factorial(n-2-k)*comb(n-1, k)*(-1)**(n-1-k)*a(k) for k in range(n-1)])
print([a(n) for n in range(24)])
A366228
Expansion of e.g.f. A(x) satisfying A(x) = 1 + Integral A(x)^A(x) dx.
Original entry on oeis.org
1, 1, 1, 3, 12, 68, 473, 3998, 39327, 443599, 5629807, 79486044, 1235018598, 20946691457, 385025599130, 7624623236381, 161823815625933, 3664505951884255, 88189911547566082, 2247691180645108608, 60480432646998315279, 1713328345952593367876, 50970518521542636421145
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 68*x^5/5! + 473*x^6/6! + 3998*x^7/7! + 39327*x^8/8! + 443599*x^9/9! + 5629807*x^10/10! + ...
where A(x) = 1 + Integral A(x)^A(x) dx.
RELATED SERIES.
A(x)^A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 68*x^4/4! + 473*x^5/5! + 3998*x^6/6! + 39327*x^7/7! + 443599*x^8/8! + ...
log(A(x)) = x + 2*x^3/3! + 3*x^4/4! + 32*x^5/5! + 155*x^6/6! + 1575*x^7/7! + 13573*x^8/8! + 160756*x^9/9! + 1938288*x^10/10! + ...
A(x)^(A(x) - 1) = 1 + 2*x^2/2! + 3*x^3/3! + 32*x^4/4! + 155*x^5/5! + 1575*x^6/6! + 13573*x^7/7! + ...
-
{a(n) = my(A=1); for(i=0, n, A = 1 + intformal( A^A +x*O(x^n) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=1); for(i=0, n, A = exp( intformal( A^(A-1) +x*O(x^n) ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments