A143121 Triangle read by rows, T(n,k) = Sum_{j=k..n} prime(j), 1 <= k <= n.
2, 5, 3, 10, 8, 5, 17, 15, 12, 7, 28, 26, 23, 18, 11, 41, 39, 36, 31, 24, 13, 58, 56, 53, 48, 41, 30, 17, 77, 75, 72, 67, 60, 49, 36, 19, 100, 98, 95, 90, 83, 72, 59, 42, 23, 129, 127, 124, 119, 112, 101, 88, 71, 52, 29, 160, 158, 155, 150, 143, 132, 119, 102, 83, 60, 31
Offset: 1
Examples
First few rows of the triangle are: 2; 5, 3; 10, 8, 5; 17, 15, 12, 7; 28, 26, 23, 18, 11; 41, 39, 36, 31, 24, 13; 58, 56, 53, 48, 41, 30, 17; ... T(5,3) = 23 = prime(3) + prime(4) + prime(5) = (5 + 7 + 11).
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
Magma
[[(&+[NthPrime(j): j in [k..n]]): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 15 2018
-
Maple
a:=proc(n,k) add(ithprime(j),j=k..n) end: seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Oct 15 2018
-
Mathematica
a[n_, k_] := a[n, k] = Plus@@Prime[Range[n - k + 1, n]]; Column[Table[a[n, k], {n, 15}, {k, n, 1, -1}], Center] (* Alonso del Arte, Jul 25 2011 *) Table[Sum[Prime[j], {j, k, n}], {n, 1, 15}, {k, 1, n}]//Flatten (* G. C. Greubel, Oct 15 2018 *)
-
PARI
a(n,k)=my(s);forprime(p=prime(k),prime(n),s+=p);s \\ Charles R Greathouse IV, Jul 25 2011
Formula
Extensions
Corrected by Hanke Bremer, Nov 28 2008
Comments