cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270273 Array read by antidiagonals: T(n,m) = number of Hamiltonian cycles in C_n X C_m.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 3, 3, 1, 1, 6, 48, 6, 1, 1, 5, 126, 126, 5, 1, 1, 8, 390, 1344, 390, 8, 1, 1, 7, 1014, 2930, 2930, 1014, 7, 1, 1, 10, 2982, 28060, 23580, 28060, 2982, 10, 1, 1, 9, 8094, 55230, 145210, 145210, 55230, 8094, 9, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 14 2016

Keywords

Examples

			The start of the sequence as table:
  0 0    1     1       1        1         1 ...
  0 1    3     6       5        8         7 ...
  1 3   48   126     390     1014      2982 ...
  1 6  126  1344    2930    28060     55230 ...
  1 5  390  2930   23580   145210   1045940 ...
  1 8 1014 28060  145210  3273360  16111928 ...
  1 7 2982 55230 1045940 16111928 257165468 ...
  ...
		

Crossrefs

Row n=3-5 give: A194952, A216588, A358853.
Main diagonal gives A222199.

Formula

T(n,2) = A124349(n) / 2.

A339074 Number of (undirected) cycles in the graph C_3 X C_n.

Original entry on oeis.org

312, 1531, 7298, 35205, 174268, 885719, 4601982, 24306577, 129851384, 698930787, 3780126106, 20505863069, 111441343860, 606312668335, 3300926292470, 17978225967081, 97939845566896, 533619551723963, 2907629293865874, 15844069824657013, 86338863686763692, 470492593924667271
Offset: 3

Views

Author

Seiichi Manyama, Nov 22 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A339074(n):
        universe = make_CnXCk(n, 3)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A339074(n) for n in range(3, 30)])

A216588 Number of Hamiltonian cycles in C_4 X C_n.

Original entry on oeis.org

126, 1344, 2930, 28060, 55230, 538744, 969378, 10066228, 16284862, 186362560, 265582226, 3447630284, 4238980734, 64031790664, 66561185858, 1197008258212, 1031815027710, 22548844488592, 15830131853490, 428115681210300, 240803790623806, 8188893146929816
Offset: 3

Views

Author

Artem M. Karavaev, Sep 09 2012

Keywords

Comments

The sequence is not monotone, although it seems to be.
It has two monotone subsequences depending on the parity of n.

Crossrefs

Row 4 of A270273. Cf. A194952.

Programs

  • Maple
    P := n -> (2*n+1)*cosh(2*n*arctanh(sqrt(1/3))) - (n/sqrt(3))*sinh(2*n*arctanh(sqrt(1/3))) + cos(Pi*n/2) - sin(Pi*n/2):
    Q := n -> (4^n-16*3^n-4)/3+8*2^(n/2)*cos(n*arctan(sqrt(7))) + 4*2^n*cosh(2*n*arctanh(sqrt(2/3)))-2*cosh(2*n*arctanh(sqrt(1/2))):
    R := n -> -2*(n+1)*(2-(-1)^n):
    a := n -> expand(P(n)) + (1 - n mod 2)*expand(Q(floor(n/2))) + (n mod 2)*R(floor(n/2)):
    seq(a(n),n=3..24);

Formula

a(n) = P(n) + Q(floor(n/2)) if n is even and a(n) = P(n) + R(floor(n/2)) if n is odd, where P(n) = (2*n + 1)*cosh(2*n*arctanh(sqrt(1/3))) - (n/sqrt(3))*sinh(2*n*arctanh(sqrt(1/3))) + cos(Pi*n/2) - sin(Pi*n/2), Q(n) = (4^n - 16*3^n - 4)/3 + 8*2^(n/2)*cos(n*arctan(sqrt(7))) + 4*2^n*cosh(2*n*arctanh(sqrt(2/3))) - 2*cosh(2*n*arctanh(sqrt(1/2))), R(n) = -2*(n + 1)*(2 - (-1)^n).
G.f.: -48*x^2 - 2*x - 17/3 + (1 - x)/(x^2 + 1) + 1/(6*(2*x + 1)) + (x + 1)/(x^2 - 2*x - 1) - 1/((x - 1)^2) + (8 - 4*x^2)/(2*x^4 - x^2 + 1) + (-16 + 62*x)/(x^2 - 4*x + 1)^2 - 2/3/(x + 1) + 1/((x + 1)^2) + (17 + 3*x)/(x^2 - 4*x + 1) + (-2 - 4*x)/(2*x^2 - 4*x - 1) + 2/3/(x - 1) - 1/(6*(2*x - 1)) + (1 - x)/(x^2 + 2*x - 1) + (-2 + 4*x)/(2*x^2 + 4*x - 1) + 16/3/(3*x^2 - 1) + 2*x/(x^2 + 1)^2.
Asympt.: a(n) ~ 2*(2 + sqrt(6))^n if n is even and
a(n) ~ ((1 - 1/(2*sqrt(3)))*n + 1/2)*(2 + sqrt(3))^n if n is odd.
Showing 1-3 of 3 results.