A195006 Some numbers of the form 2*x^3 + y^3 + z^3 found by a certain algorithm.
1247, 1462, 1588, 2246, 2822, 3307, 3335, 3641, 4990, 5188, 5279, 5620, 5629, 6707, 6980, 7097, 7177, 7323, 7519, 7853, 8114, 8380, 8572, 8644, 8887, 9274, 9589, 9850
Offset: 1
Examples
1247 = 2*26478194^3 + 108525095^3 + (-109565866)^3.
Links
- N. Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction, arXiv:math/0005139 [math.NT], 2000.
- N. Elkies, Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction, in Algorithmic Number Theory (Leiden 2000), Lecture Notes in Computer Science 1838, Springer 2000.
- A.-S. Elsenhans, J. Jahnel, New sums of three cubes, Math. Comp. 78 (2009) 1227-1230.
- K. Koyama, On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n, Math. Comp. 69 (2000) 1735-1742.
- Allan J. MacLeod, New Solutions of d=2x^3+y^3+z^3, arXiv:1109.2396v1 [math.NT], Sep 12, 2011.
Comments