cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195014 Vertex number of a square spiral whose edges have length A195013.

Original entry on oeis.org

0, 2, 5, 9, 15, 21, 30, 38, 50, 60, 75, 87, 105, 119, 140, 156, 180, 198, 225, 245, 275, 297, 330, 354, 390, 416, 455, 483, 525, 555, 600, 632, 680, 714, 765, 801, 855, 893, 950, 990, 1050, 1092, 1155, 1199, 1265, 1311, 1380, 1428, 1500, 1550, 1625, 1677
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2011

Keywords

Comments

Zero together with the partial partial sums of A195013.
Second bisection is 2, 9, 21, 38, 60, 87, 119, ...: A005476. - Omar E. Pol, Sep 25 2011
Number of pairs (x,y) with even x in {0,...,n}, odd y in {0,...,3n}, and xClark Kimberling, Jul 02 2012

Crossrefs

Programs

  • Magma
    [(10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16 : n in [0..50]]; // Vincenzo Librandi, Oct 26 2014
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,2,5,9,15},60] (* Harvey P. Dale, May 20 2019 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: f(x)/g(x), where f(x) = 2*x + 3*x^2 and g(x) = (1+x)^2 * (1-x)^3. - Clark Kimberling, Jul 02 2012
a(n) = (10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16. - Luce ETIENNE, Aug 11 2014