A195014 Vertex number of a square spiral whose edges have length A195013.
0, 2, 5, 9, 15, 21, 30, 38, 50, 60, 75, 87, 105, 119, 140, 156, 180, 198, 225, 245, 275, 297, 330, 354, 390, 416, 455, 483, 525, 555, 600, 632, 680, 714, 765, 801, 855, 893, 950, 990, 1050, 1092, 1155, 1199, 1265, 1311, 1380, 1428, 1500, 1550, 1625, 1677
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16 : n in [0..50]]; // Vincenzo Librandi, Oct 26 2014
-
Mathematica
LinearRecurrence[{1,2,-2,-1,1},{0,2,5,9,15},60] (* Harvey P. Dale, May 20 2019 *)
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: f(x)/g(x), where f(x) = 2*x + 3*x^2 and g(x) = (1+x)^2 * (1-x)^3. - Clark Kimberling, Jul 02 2012
a(n) = (10*n^2 + 18*n + 3 + (2*n - 3)*(-1)^n)/16. - Luce ETIENNE, Aug 11 2014
Comments