A195025 a(n) = n*(14*n + 3).
0, 17, 62, 135, 236, 365, 522, 707, 920, 1161, 1430, 1727, 2052, 2405, 2786, 3195, 3632, 4097, 4590, 5111, 5660, 6237, 6842, 7475, 8136, 8825, 9542, 10287, 11060, 11861, 12690, 13547, 14432, 15345, 16286, 17255, 18252, 19277, 20330, 21411, 22520, 23657, 24822, 26015
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[14*n^2 +3*n: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
-
Mathematica
Table[n(14n+3),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,17,62},50] (* Harvey P. Dale, Jul 17 2023 *)
-
PARI
a(n)=n*(14*n+3) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(17 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
Extensions
Name suggested by Bruno Berselli, Oct 13 2011
Comments