A195043 Concentric 11-gonal numbers.
0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Haskell
a195043 n = a195043_list !! n a195043_list = scanl (+) 0 a175885_list -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
-
Mathematica
LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
-
PARI
Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
Formula
a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023
Comments