A195056 Decimal expansion of Pi^2/7.
1, 4, 0, 9, 9, 4, 3, 4, 8, 5, 8, 6, 9, 9, 0, 8, 3, 7, 4, 1, 1, 9, 2, 1, 2, 9, 9, 9, 9, 8, 2, 3, 0, 7, 3, 0, 5, 0, 4, 4, 8, 1, 4, 2, 0, 1, 0, 3, 4, 3, 9, 8, 6, 6, 0, 9, 1, 6, 1, 9, 2, 7, 6, 8, 0, 3, 1, 4, 3, 4, 9, 7, 4, 6, 3, 1, 3, 1, 5, 0, 3, 4, 7, 1, 4, 5, 3, 9, 0, 5, 7, 6, 7, 4, 0, 7, 8, 8, 9, 0, 2, 6, 0, 5, 7
Offset: 1
Examples
1.409943485869908374119212999982307305045...
References
- F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
Links
Programs
-
Magma
Pi(RealField(128))^2/7; // G. C. Greubel, Jun 02 2021
-
Mathematica
RealDigits[Pi^2/7, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
-
PARI
Pi^2/7 \\ Michel Marcus, Feb 04 2022
-
Sage
numerical_approx(pi^2/7, digits=128) # G. C. Greubel, Jun 02 2021
Formula
Equals Sum_{k>=1} A000265(k)/k^3. - Amiram Eldar, Jun 27 2020
Equals Integral_{x=0..1} log(1+x+x^2+x^3+x^4+x^5+x^6)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
Extensions
Extended by T. D. Noe, Oct 05 2011