cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A195208 Number of odd divisors of !n.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 4, 6, 8, 8, 10, 4, 6, 12, 8, 4, 24, 4, 8, 24, 32, 16, 24, 96, 32, 48, 24, 16, 384, 32, 64, 144, 16, 8, 36, 128, 16, 80, 24, 16, 96, 32, 16, 96, 4, 16, 448, 128, 64, 24, 192, 48, 192, 64, 16, 96, 768, 32, 96, 32, 64
Offset: 0

Views

Author

Michel Lagneau, Sep 13 2011

Keywords

Comments

!k is a subfactorial number (A000166).

Examples

			a(7) = 6 because the divisors of  !7 = 1854 are  {1, 2, 3, 6, 9, 18, 103, 206, 309, 618, 927, 1854} with 6  odd divisors  1, 3, 9, 103, 309 and 927 => 6 is in the sequence.
		

Crossrefs

Programs

  • Maple
    A166 := proc(n) option remember; (n-1)*(procname(n-1)+procname(n-2)); end:
    A166(0):= 1: A166(1):= 0:
    f:= proc(n) local v; v:= A166(n); numtheory:-tau(v/2^padic:-ordp(v,2)) end proc:
    map(f, [$1..60]); # Robert Israel, Aug 01 2024
  • Mathematica
    f[n_] := Block[{d = Divisors[Subfactorial[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 0, 60}]
  • PARI
    a(n)=if(n<2,1-n,my(x='x,k=n!*polcoeff(exp(-x+x*O(x^n))/(1-x),n));numdiv(k>>valuation(k,2))) \\ Charles R Greathouse IV, Sep 13 2011

Formula

a(n) = A000005(A000265(A000166(n))). - Robert Israel, Aug 01 2024
a(n) = A001227(A000166(n)), for n != 1. - Amiram Eldar, Aug 02 2024

A195209 Sum of even divisors of !n.

Original entry on oeis.org

0, 0, 0, 2, 0, 72, 0, 2704, 0, 268128, 0, 17621496, 0, 4974281208, 0, 549790303712, 0, 245357774621280, 0, 67684833350266496, 0, 36434223374991414336, 0, 10781900341537812480000, 0, 14585451990785851336761600, 0, 4706112122106541811177554944, 0, 5607912482098966721098538956800, 0
Offset: 0

Views

Author

Michel Lagneau, Sep 13 2011

Keywords

Examples

			a(7) = 2704 because the divisors of  !7 = 1854 are  {1, 2, 3, 6, 9, 18, 103, 206, 309, 618, 927, 1854}, and the sum of the 6  even divisors  2, 6, 18, 206, 618 and 1854 is 2704.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[Subfactorial[n]], EvenQ[ # ]&]], {n, 0, 25}]

Formula

From Amiram Eldar, Aug 02 2024: (Start)
a(n) = A146076(A000166(n)), for n != 1.
a(2*n) = 0. (End)

Extensions

a(26)-a(30) from Amiram Eldar, Aug 02 2024

A195210 Sum of odd divisors of !n.

Original entry on oeis.org

1, 0, 1, 1, 13, 12, 324, 1352, 18368, 19152, 1994322, 8810748, 193690826, 829046868, 34563283272, 274895151856, 14554448767872, 8178592487376, 2493850026398472, 33842416675133248, 1037660717168380800, 6072370562498569056, 682597834324732589120, 5390950170768906240000
Offset: 0

Views

Author

Michel Lagneau, Sep 13 2011

Keywords

Comments

!n is a subfactorial number (A000166).
Property of the sequence: for n > 4 the sum of odd divisors of !n seems even.

Examples

			a(7) = 1352 because the divisors of  !7 = 1854 are  {1, 2, 3, 6, 9, 18, 103, 206, 309, 618, 927, 1854}, and the sum of the 6  odd divisors  1, 3, 9, 103, 309 and 927 is 1352.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[Subfactorial[n]], OddQ[ # ]&]], {n, 0, 21}]

Formula

a(n) = A000593(A000166(n)), for n != 1. - Amiram Eldar, Aug 02 2024

Extensions

a(22)-a(23) from Amiram Eldar, Aug 02 2024

A378157 The least prime dividing !n = A000166(n).

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 11, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 11, 2, 3, 2, 11, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2, 11, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 71, 2, 73, 2, 3, 2, 7, 2, 79, 2, 3, 2
Offset: 3

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_] := Module[{p = 2}, While[! Divisible[n, p], p = NextPrime[p]]; p]; Array[lpf[Subfactorial[#]] &, 50, 3]
  • PARI
    lpf(n) = {my(p = 2); while(n % p, p = nextprime(p+1)); p;}
    lista(nmax) = {my(s = 1); for(n = 3, nmax, s = n * s + (-1)^n; print1(lpf(s), ", ")); }

Formula

a(n) = A020639(A000166(n)).
a(n) = min(A020639(n-1), A378159(n-2)) for n >= 2.

A378160 The number of distinct prime factors of !n = A000166(n).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 2, 4, 3, 3, 4, 3, 3, 4, 5, 5, 4, 7, 5, 6, 4, 5, 7, 6, 6, 7, 4, 4, 4, 8, 4, 6, 4, 5, 6, 6, 4, 7, 2, 4, 7, 8, 6, 5, 7, 6, 7, 7, 4, 6, 9, 6, 6, 6, 6, 6, 4, 4, 5, 4, 3, 6, 6, 6, 6, 6, 7, 7, 4, 8, 6, 5, 8, 6, 4, 4, 5, 8, 4, 7, 7, 8, 6
Offset: 2

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[PrimeNu[Subfactorial[#]] &, 40, 2]
  • PARI
    lista(nmax) = {my(s = 0); for(n = 2, nmax, s = n * s + (-1)^n; print1(omega(s), ", "));}

Formula

a(n) = A001221(A000166(n)).
a(n) >= A001221(n-1) + 1 for n >=5.

Extensions

a(82)-a(88) from Jinyuan Wang, Nov 24 2024

A378161 The number of prime factors of !n = A000166(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 3, 2, 4, 3, 6, 5, 3, 3, 6, 3, 3, 5, 6, 3, 8, 5, 6, 5, 8, 5, 9, 5, 5, 11, 7, 6, 9, 4, 8, 6, 8, 4, 10, 5, 5, 7, 8, 4, 8, 2, 7, 12, 8, 6, 9, 8, 7, 8, 8, 4, 10, 10, 8, 7, 6, 6, 8, 4, 4, 8, 9, 3, 8, 6, 7, 7, 6, 7, 13, 4, 8, 8, 6, 9, 7, 4, 7, 10, 8, 4, 9, 7
Offset: 2

Views

Author

Amiram Eldar, Nov 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[PrimeOmega[Subfactorial[#]] &, 40, 2]
  • PARI
    lista(nmax) = {my(s = 0); for(n = 2, nmax, s = n * s + (-1)^n; print1(bigomega(s), ", "));}

Formula

a(n) = A001222(A000166(n)).
a(n) >= A001222(n-1) + 1 for n >=4, with equality if and only if n is in A301423.

Extensions

a(82)-a(86) from Jinyuan Wang, Nov 24 2024
Showing 1-6 of 6 results.