A195322 a(n) = 20*n^2.
0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0
Examples
From _Muniru A Asiru_, Feb 01 2018: (Start) n=0, a(0) = 20*0^2 = 0. n=1, a(1) = 20*1^2 = 20. n=1, a(2) = 20*2^2 = 80. n=1, a(3) = 20*3^2 = 180. n=1, a(4) = 20*4^2 = 320. ... (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Léo Sauvé, Problem 53, Crux Mathematicorum, Vol. 1, Nov. 1975, page 88.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..10^3],n->20*n^2); # Muniru A Asiru, Feb 01 2018
-
Magma
[20*n^2: n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
-
Maple
a := n -> 20*n^2; seq(a(n), n=0..10^3); # Muniru A Asiru, Feb 01 2018
-
Mathematica
20 Range[0, 40]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 20, 80}, 50] (* Harvey P. Dale, Jan 18 2013 *)
-
PARI
a(n) = 20*n^2 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
Comments