cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195506 Denominator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number.

Original entry on oeis.org

1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 46796108014656000, 46796108014656000, 374368864117248000, 1839274229408039424000, 1839274229408039424000
Offset: 1

Views

Author

Franz Vrabec, Sep 19 2011

Keywords

Comments

Lim_{n -> infinity} (A195505(n)/a(n)) = 2*Zeta(3) [L. Euler].
For n = 1 to n = 13, a(n) = A334582(n), but a(14) = 46796108014656000 <> 6685158287808000 = A334582(14). - Petros Hadjicostas, May 06 2020

Examples

			a(2) = 8 because 1 + (1 + 1/2)/2^2 = 11/8.
The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A002117, A195505 (numerators), A334582.

Programs

  • Mathematica
    s = 0; Table[s = s + HarmonicNumber[n]/n^2; Denominator[s], {n, 20}] (* T. D. Noe, Sep 20 2011 *)
  • PARI
    H(n) = sum(k=1, n, 1/k);
    a(n) = denominator(sum(k=1, n, H(k)/k^2)); \\ Michel Marcus, May 07 2020