cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195547 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/2.

Original entry on oeis.org

1, 4, 12, 15, 80, 208, 273, 1428, 3740, 4895, 25632, 67104, 87841, 459940, 1204140, 1576239, 8253296, 21607408, 28284465, 148099380, 387729212, 507544127, 2657535552, 6957518400, 9107509825, 47687540548, 124847601996, 163427632719, 855718194320, 2240299317520
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.
a(n) is the numerator of the harmonic mean of F(n) and F(n+1), where F = A000045 (Fibonacci numbers). Example: 2*F(9)*F(10)/(F(9)+F(10)) = 2*34*55/(34+55) = 3740/89, therefore a(9) = 3740. - Francesco Daddi, Jul 04 2018

Crossrefs

Programs

  • Mathematica
    r = 1/2; z = 30;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195547, A195548 *)
    Sqrt[a^2 + b^2] (* A195549 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
    Table[Numerator[2 Fibonacci[n] Fibonacci[n+1] / ( Fibonacci[n] + Fibonacci[n+1])], {n, 1, 40}] (* Vincenzo Librandi, Jul 21 2018 *)

Formula

a(n) = 2*F(n)*F(n+1)/(2-((n+2)^2 mod 3)), where F(n)=Fibonacci(n). - Gary Detlefs, Oct 15 2011
Empirical G.f.: x*(1+4*x+12*x^2-2*x^3+12*x^4+4*x^5+x^6)/(1-17*x^3-17*x^6+x^9). - Colin Barker, Apr 15 2012