A195597 Continued fraction for alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.
4, 3, 4, 1, 1, 1, 11, 2, 19, 1, 3, 1, 1, 1, 14, 1, 3, 5, 58, 3, 1, 10, 1, 1, 6, 5, 13, 127, 1, 1, 7, 13, 1, 2, 1, 2, 2, 1, 2, 2, 4, 2, 4, 1, 1, 6, 9, 3, 1, 16, 1, 3, 2, 32, 3, 1, 1, 2, 11, 1, 13, 4, 2, 1, 1, 1, 1, 2, 2, 6, 1, 1, 1, 2, 25, 1, 5, 5, 1, 1, 1, 1, 5, 2, 3, 2, 5, 25, 1, 190, 2, 1, 5, 3, 1, 20, 1, 1, 2, 1, 3
Offset: 0
Examples
4.31107040700100503504707609644689027839156299804028805066937...
Links
- B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
Crossrefs
Programs
-
Maple
with(numtheory): alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): cfrac(evalf(alpha, 130), 100, 'quotients')[];
-
Mathematica
alpha = -1/ProductLog[-1/(2*E)]; ContinuedFraction[alpha, 101] (* Jean-François Alcover, Jun 20 2013 *)
Formula
Extensions
Offset changed by Andrew Howroyd, Jul 03 2024
Comments