A195600 Continued fraction for beta = 3/(2*log(alpha/2)); alpha = A195596.
1, 1, 20, 3, 2, 7, 1, 1, 1, 12, 1, 5, 1, 91, 1, 1, 3, 87, 2, 1, 1, 1, 1, 3, 1, 9, 3, 2, 1, 1, 1, 1, 190, 1, 3, 1, 82, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 12, 6, 2, 2, 2, 3, 2, 1, 1, 1, 2, 3, 21, 1, 1, 12, 1, 7, 3, 2, 26, 3, 2, 1, 1, 1, 9, 1, 15, 4, 3, 3, 1, 3, 1
Offset: 0
Examples
1.95302570335815413945406288542575380414251340201036319609354...
Links
- B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
Crossrefs
Programs
-
Maple
with(numtheory): alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): beta:= 3/(2*log(alpha/2)): cfrac(evalf(beta, 130), 100, 'quotients')[];
-
Mathematica
beta = 3/(2+2*ProductLog[-1/(2*E)]); ContinuedFraction[beta, 83] (* Jean-François Alcover, Jun 20 2013 *)
Formula
Extensions
Offset changed by Andrew Howroyd, Jul 03 2024
Comments