A195616 Denominators of Pythagorean approximations to 3.
12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..633
- Index entries for linear recurrences with constant coefficients, signature (37,37,-1).
Programs
-
Magma
I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Mathematica
r = 3; z = 20; p[{f_, n_}] := (#1[[2]]/#1[[ 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ Array[FromContinuedFraction[ ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; {a, b} = ({Denominator[#1], Numerator[#1]} &)[ p[{r, z}]] (* A195616, A195617 *) Sqrt[a^2 + b^2] (* A097315 *) (* Peter J. C. Moses, Sep 02 2011 *) Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
-
PARI
Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
-
SageMath
A085447=BinaryRecurrenceSequence(6,1,2,6) [(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
Formula
From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End)
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = (3/10)*(A097314(n) + (-1)^n).
a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End)
Comments