cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195622 Denominators of Pythagorean approximations to 5.

Original entry on oeis.org

20, 2020, 206040, 21014040, 2143226060, 218588044060, 22293837268080, 2273752813300080, 231900493119340100, 23651576545359390100, 2412228907133538450120, 246023696951075562522120, 25092004860102573838806140, 2559138472033511455995704140
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Magma
    I:=[20,2020,206040]; [n le 3 select I[n] else 101*Self(n-1) +101*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
    
  • Mathematica
    r = 5; z = 20;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195622, A195623 *)
    Sqrt[a^2 + b^2] (* A097727 *)
    (* by Peter J. C. Moses, Sep 02 2011 *)
    LinearRecurrence[{101,101,-1},{20,2020,206040},20] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    Vec(20*x/((x+1)*(x^2-102*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
    
  • SageMath
    A097726=BinaryRecurrenceSequence(102, -1, 1, 103)
    [(5/26)*(A097726(n) - (-1)^n) for n in range(1, 41)] # G. C. Greubel, Feb 15 2023

Formula

From Colin Barker, Jun 03 2015: (Start)
a(n) = 101*a(n-1) + 101*a(n-2) - a(n-3).
G.f.: 20*x/((1+x)*(1-102*x+x^2)). (End)
a(n) = (5/26)*(A097726(n) - (-1)^n). - G. C. Greubel, Feb 15 2023