cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195500 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).

Original entry on oeis.org

3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

For each positive real number r, there is a sequence (a(n),b(n),c(n)) of primitive Pythagorean triples such that the limit of b(n)/a(n) is r and
|r-b(n+1)/a(n+1)| < |r-b(n)/a(n)|. Peter Shiu showed how to find (a(n),b(n)) from the continued fraction for r, and Peter J. C. Moses incorporated Shiu's method in the Mathematica program shown below.
Examples:
r...........a(n)..........b(n)..........c(n)
sqrt(2).....A195500.......A195501.......A195502
sqrt(3).....A195499.......A195503.......A195531
sqrt(5).....A195532.......A195533.......A195534
sqrt(6).....A195535.......A195536.......A195537
sqrt(8).....A195538.......A195539.......A195540
sqrt(12)....A195680.......A195681.......A195682
e...........A195541.......A195542.......A195543
pi..........A195544.......A195545.......A195546
tau.........A195687.......A195688.......A195689
1...........A046727.......A084159.......A001653
2...........A195614.......A195615.......A007805
3...........A195616.......A195617.......A097315
4...........A195619.......A195620.......A078988
5...........A195622.......A195623.......A097727
1/2.........A195547.......A195548.......A195549
3/2.........A195550.......A195551.......A195552
5/2.........A195553.......A195554.......A195555
1/3.........A195556.......A195557.......A195558
2/3.........A195559.......A195560.......A195561
1/4.........A195562.......A195563.......A195564
5/4.........A195565.......A195566.......A195567
7/4.........A195568.......A195569.......A195570
1/5.........A195571.......A195572.......A195573
2/5.........A195574.......A195575.......A195576
3/5.........A195577.......A195578.......A195579
4/5.........A195580.......A195611.......A195612
sqrt(1/2)...A195625.......A195626.......A195627
sqrt(1/3)...{1}+A195503...{0}+A195499...{1}+A195531
sqrt(2/3)...A195631.......A195632.......A195633
sqrt(3/4)...A195634.......A195635.......A195636

Examples

			For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
		

Crossrefs

Programs

  • Maple
    Shiu := proc(r,n)
            t := r+sqrt(1+r^2) ;
            cf := numtheory[cfrac](t,n+1) ;
            mn := numtheory[nthconver](cf,n) ;
            (mn-1/mn)/2 ;
    end proc:
    A195500 := proc(n)
            Shiu(sqrt(2),n) ;
            denom(%) ;
    end proc: # R. J. Mathar, Sep 21 2011
  • Mathematica
    r = Sqrt[2]; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195500, A195501 *)
    Sqrt[a^2 + b^2] (* A195502 *)

A097727 Pell equation solutions (5*b(n))^2 - 26*a(n)^2 = -1 with b(n)=A097726(n), n >= 0.

Original entry on oeis.org

1, 101, 10301, 1050601, 107151001, 10928351501, 1114584702101, 113676711262801, 11593909964103601, 1182465139627304501, 120599850332020955501, 12300002268726510156601, 1254479631559772015017801, 127944622416828019021659101, 13049097006884898168194210501
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Hypotenuses of primitive Pythagorean triples in A195622 and A195623. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (5,1), (515,101), (52525,10301), ... give the positive integer solutions to x^2 - 26*y^2 =-1.
		

Crossrefs

Cf. A097725 for S(n, 102).
Row 5 of array A188647.

Programs

  • GAP
    a:=[1,101];; for n in [3..20] do a[n]:=102*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,101]; [n le 2 select I[n] else 102*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{102,-1},{1,101},20] (* Harvey P. Dale, Apr 12 2014 *)
    CoefficientList[Series[(1-x)/(1-102x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Apr 13 2014 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-102*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-102*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 2*51) - S(n-1, 2*51) = T(2*n+1, sqrt(26))/sqrt(26), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 10*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-102*x+x^2).
a(n) = 102*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=101. - Philippe Deléham, Nov 18 2008

Extensions

More terms from Harvey P. Dale, Apr 12 2014

A195623 Numerators of Pythagorean approximations to 5.

Original entry on oeis.org

99, 10101, 1030199, 105070201, 10716130299, 1092940220301, 111469186340399, 11368764066500401, 1159502465596700499, 118257882726796950501, 12061144535667692250599, 1230118484755377812610601, 125460024300512869194030699, 12795692360167557279978520701, 1305035160712790329688615080799
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195622 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[99,10101,1030199]; [n le 3 select I[n] else 101*Self(n-1) +101*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 16 2023
    
  • Mathematica
    Table[(5*LucasL[2*n+1,10] +2*(-1)^n)/52, {n,40}] (* G. C. Greubel, Feb 16 2023 *)
  • PARI
    Vec(-x*(x^2-102*x-99) / ((x+1)*(x^2-102*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
    
  • SageMath
    A097726=BinaryRecurrenceSequence(102, -1, 1, 103)
    [(1/26)*(25*A097726(n) + (-1)^n) for n in range(1, 41)] # G. C. Greubel, Feb 16 2023

Formula

From Colin Barker, Jun 03 2015: (Start)
a(n) = 101*a(n-1) + 101*a(n-2) - a(n-3).
G.f.: x*(99+102*x-x^2)/((1+x)*(1-102*x+x^2)). (End)
a(n) = (1/26)*(25*A097726(n) + (-1)^n). - G. C. Greubel, Feb 16 2023
E.g.f.: (5*exp(51*x)*(5*cosh(10*sqrt(26)*x) + sqrt(26)*sinh(10*sqrt(26)*x)) + exp(-x) - 26)/26. - Stefano Spezia, Aug 05 2024
Showing 1-3 of 3 results.