cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195685 Primes p for which tau(2p-1) = tau(2p+1) = 4.

Original entry on oeis.org

17, 43, 47, 71, 101, 107, 109, 151, 197, 223, 317, 349, 461, 521, 569, 631, 673, 701, 821, 881, 919, 947, 971, 991, 1051, 1091, 1109, 1153, 1181, 1217, 1231, 1259, 1321, 1361, 1367, 1549, 1693, 1801, 1847, 1933, 1951, 1979, 2143, 2207, 2267, 2297, 2441, 2801
Offset: 1

Views

Author

Timothy L. Tiffin, Sep 22 2011

Keywords

Comments

Sequence terms are a subset of those listed in A086006 and A068497.
The numbers 2p-1, 2p, 2p+1 form a run (indeed, a maximal run) of three consecutive integers each with four positive divisors. The first two examples are 33, 34, 35 and 85, 86, 87. A039833 gives the first number in these maximal 3-integer runs. - Timothy L. Tiffin, Jul 05 2016

Examples

			tau(2*17-1) = tau(33) = tau(3*11) = 4 = tau(5*7) = tau(35) = tau(2*17+1) and tau(2*43-1) = tau(85) = tau(5*17) = 4 = tau(3*29) = tau(87) = tau(2*43+1). - _Timothy L. Tiffin_, Jul 05 2016
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= p-> isprime(p) and tau(2*p-1)=4 and tau(2*p+1)=4:
    select(q, [$1..3000])[];  # Alois P. Heinz, Apr 18 2019
  • Mathematica
    Select[Prime[Range[500]], DivisorSigma[0, 2 # - 1] == DivisorSigma[0, 2 # + 1] == 4 &] (* T. D. Noe, Sep 22 2011 *)
    Select[Mean[#]/2&/@SequencePosition[DivisorSigma[0,Range[6000]],{4,,4}],PrimeQ] (* _Harvey P. Dale, Nov 26 2021 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if ((numdiv(2*p-1) == 4) && (numdiv(2*p+1) == 4), print1(p, ", "))); \\ Michel Marcus, Jul 06 2016

Formula

a(n) = A248201(n)/2. - Torlach Rush, Jun 25 2021