A195695 Decimal expansion of arcsin(sqrt(1/3)) and of arccos(sqrt(2/3)).
6, 1, 5, 4, 7, 9, 7, 0, 8, 6, 7, 0, 3, 8, 7, 3, 4, 1, 0, 6, 7, 4, 6, 4, 5, 8, 9, 1, 2, 3, 9, 9, 3, 6, 8, 7, 8, 5, 5, 1, 7, 0, 0, 0, 4, 6, 7, 7, 5, 4, 7, 4, 1, 9, 5, 2, 7, 7, 7, 4, 1, 6, 6, 8, 3, 1, 9, 9, 6, 1, 5, 7, 2, 3, 9, 1, 2, 8, 0, 4, 3, 9, 2, 6, 6, 2, 5, 8, 1, 0, 0, 8, 5, 4, 3, 0, 4, 6, 0, 5
Offset: 0
Examples
arcsin(sqrt(1/3)) = 0.61547970867038734106746458912399...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- John D. Barrow, Outer space: Archimedean ice cream cones, +plus magazine.
- Wikipedia, Polyhedron, and further links therein.
- Index entries for transcendental numbers
Programs
-
Magma
[Arcsin(Sqrt(1/3))]; // G. C. Greubel, Nov 18 2017
-
Mathematica
r = Sqrt[1/3]; N[ArcSin[r], 100] RealDigits[%] (* A195695 *) N[ArcCos[r], 100] RealDigits[%] (* A195696 *) N[ArcTan[r], 100] RealDigits[%] (* A019673 *) N[ArcCos[-r], 100] RealDigits[%] (* A195698 *)
-
PARI
atan(1/sqrt(2)) \\ Michel Marcus, Aug 27 2017
Formula
Also equals arctan(1/sqrt(2)). - Michel Marcus, Aug 27 2017
Comments