cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A137914 Decimal expansion of arccos(1/3).

Original entry on oeis.org

1, 2, 3, 0, 9, 5, 9, 4, 1, 7, 3, 4, 0, 7, 7, 4, 6, 8, 2, 1, 3, 4, 9, 2, 9, 1, 7, 8, 2, 4, 7, 9, 8, 7, 3, 7, 5, 7, 1, 0, 3, 4, 0, 0, 0, 9, 3, 5, 5, 0, 9, 4, 8, 3, 9, 0, 5, 5, 5, 4, 8, 3, 3, 3, 6, 6, 3, 9, 9, 2, 3, 1, 4, 4, 7, 8, 2, 5, 6, 0, 8, 7, 8, 5, 3, 2, 5, 1, 6, 2, 0, 1, 7, 0, 8, 6, 0, 9, 2, 1, 1, 3, 8, 9, 4
Offset: 1

Views

Author

Rick L. Shepherd, Feb 22 2008

Keywords

Comments

Dihedral angle in radians of regular tetrahedron.
Arccos(1/3) is the central angle of a cube, made by the center and two neighboring vertices. - Clark Kimberling, Feb 10 2009
Also the complementary tetrahedral angle, Pi-A156546, and therefore related to the magic angle (Pi-2*A195696). - Stanislav Sykora, Jan 23 2014
Polar angle (or apex angle) of the cone that subtends exactly one third of the full solid angle. - Stanislav Sykora, Feb 20 2014
Also the acute angle in the rhombi and isosceles trapezoids in the trapezo-rhombic dodecahedron. - Eric W. Weisstein, Jan 09 2019
Also the angle between the tangent lines to the curves y = sin(x) at y = cos(x) at the points of intersection. - David Radcliffe, Jan 17 2023

Examples

			1.2309594173407746821349291782479873757103400093550948390555483336639923144...
		

Crossrefs

Cf. A137915 (same in degrees), A019670, A195695, A195696, A238238, Platonic solids dihedral angles: A156546 (octahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arccos(1/3); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[ArcCos[1/3], 10, 120][[1]] (* Harvey P. Dale, Jul 06 2018 *)
    RealDigits[ArcSec[3], 10, 120][[1]] (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    acos(1/3)
    

Formula

arccos(1/3) = arctan(2*sqrt(2)) = 2*arcsin(sqrt(3)/3) = arcsin(2*sqrt(2)/3).
Equals sqrt(2)*Sum_{k>=0} (-1)^k/(2^k*(2*k+1)). - Davide Rotondo, Jun 07 2025
Equals 2*A195695. - Hugo Pfoertner, Jun 07 2025

A195696 Decimal expansion of arccos(sqrt(1/3)) and of arcsin(sqrt(2/3)) and arctan(sqrt(2)).

Original entry on oeis.org

9, 5, 5, 3, 1, 6, 6, 1, 8, 1, 2, 4, 5, 0, 9, 2, 7, 8, 1, 6, 3, 8, 5, 7, 1, 0, 2, 5, 1, 5, 7, 5, 7, 7, 5, 4, 2, 4, 3, 4, 1, 4, 6, 9, 5, 0, 1, 0, 0, 0, 5, 4, 9, 0, 9, 5, 9, 6, 9, 8, 1, 2, 9, 3, 2, 1, 9, 1, 2, 0, 4, 5, 9, 0, 3, 9, 7, 6, 4, 5, 5, 3, 8, 7, 3, 9, 1, 6, 0, 2, 5, 8, 5, 6, 2, 8, 0, 7, 3, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Comments

Angle (in radians) between an edge and (the normal of) a face of the regular tetrahedron. - R. J. Mathar, Feb 23 2012
Also known as magic angle; root of P_2(cos(theta)), with P_2(x) being second-order Legendre polynomial. - Stanislav Sykora, May 25 2012
From Stanislav Sykora, Nov 14 2013: (Start)
Also the angle between the body diagonal of a cube and an incident edge, and therefore the polar angle of the cone circumscribed to a cube from one of its vertices.
Also half of the tetrahedral angle (A156546).
In nuclear magnetic resonance, the angle, with respect to the direction of the main magnetic field, under which a solid sample needs to be spun in order to average to zero unwanted dipole-dipole spin interactions (the magic angle spinning, or MAS, technique). (End)
Also <3_2> in Conway et al. (1999). - Eric W. Weisstein, Nov 06 2024

Examples

			0.9553166181245092781638571025157577... (= 54.73561031... degrees).
		

Crossrefs

Cf. A156546, A195695, A197739, A210974 (in degrees), A243445.

Programs

Formula

Equals i*log(sqrt(1/3) - i*sqrt(2/3)). - Andrea Pinos, Nov 03 2023
Equals A156546/2 = 2*A197739. - Hugo Pfoertner, Nov 06 2024

A195698 Decimal expansion of arccos(-sqrt(1/3)).

Original entry on oeis.org

2, 1, 8, 6, 2, 7, 6, 0, 3, 5, 4, 6, 5, 2, 8, 3, 9, 6, 0, 2, 9, 8, 7, 8, 6, 2, 8, 0, 7, 6, 3, 7, 4, 5, 1, 2, 9, 9, 5, 3, 7, 5, 4, 7, 0, 4, 3, 6, 5, 1, 0, 0, 3, 3, 0, 0, 1, 5, 2, 4, 6, 4, 6, 2, 9, 8, 5, 9, 0, 4, 3, 6, 0, 3, 8, 2, 2, 3, 2, 5, 4, 3, 2, 4, 0, 6, 4, 3, 2, 2, 2, 7, 5, 6, 4, 8, 8, 9, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Comments

Dihedral angle between mixed type faces of the truncated octahedron. - R. J. Mathar, Mar 24 2012

Examples

			arccos(-1/sqrt(3)) = 2.1862760354...
		

Crossrefs

Cf. A195695.

Programs

Formula

Equals Pi - arcsin(sqrt(2/3)) = Pi - arctan(sqrt(2)). - Amiram Eldar, Jul 08 2023

A118417 a(n) = (2*n + 1) * 2^(n + 1).

Original entry on oeis.org

2, 12, 40, 112, 288, 704, 1664, 3840, 8704, 19456, 43008, 94208, 204800, 442368, 950272, 2031616, 4325376, 9175040, 19398656, 40894464, 85983232, 180355072, 377487360, 788529152, 1644167168, 3422552064, 7113539584, 14763950080, 30601641984, 63350767616
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*2^(n+1): n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
  • Mathematica
    CoefficientList[Series[2 (1 - 3 x^2 + 2 x^3)/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 02 2016 *)
    Table[(2n+1)2^(n+1),{n,0,30}] (* or *) LinearRecurrence[{4,-4},{2,12},30] (* Harvey P. Dale, Oct 25 2021 *)

Formula

a(n) = A118416(n+1,n) = 2*A014480(n).
G.f.: 2*(1-3*x^2+2*x^3)/((1-x)^2*(1-2*x)^2). - Vincenzo Librandi, Sep 02 2016
Sum_{n>=0} 1/a(n) = A196525. - Fred Daniel Kline, May 24 2019
Sum_{n>=0} (-1)^n/a(n) = arctan(1/sqrt(2))/sqrt(2) = A195695 / A002193. - Amiram Eldar, Oct 01 2022

A195701 Decimal expansion of arctan(sqrt(2/3)).

Original entry on oeis.org

6, 8, 4, 7, 1, 9, 2, 0, 3, 0, 0, 2, 2, 8, 2, 9, 1, 3, 8, 8, 8, 0, 9, 8, 0, 6, 9, 7, 1, 1, 0, 6, 4, 0, 1, 5, 9, 2, 9, 2, 7, 3, 3, 0, 9, 1, 4, 2, 6, 6, 2, 2, 6, 2, 1, 1, 5, 1, 1, 0, 5, 2, 6, 3, 4, 9, 1, 4, 9, 4, 1, 4, 2, 5, 7, 1, 2, 6, 3, 2, 4, 4, 6, 9, 0, 8, 6, 2, 4, 1, 2, 9, 0, 3, 2, 9, 2, 9, 8, 5
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(sqrt(2/3)) = 0.68471920300...
		

Crossrefs

Programs

  • Magma
    [Arctan(Sqrt(2/3))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[2/3];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A195696 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A195695 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A195702 *)
  • PARI
    atan(sqrt(2/3)) \\ G. C. Greubel, Nov 18 2017
    

Formula

Equals arcsin(sqrt(2/5)) = arccos(sqrt(3/5)). - Amiram Eldar, Jul 10 2023

A195702 Decimal expansion of arccos(-sqrt(2/3)).

Original entry on oeis.org

2, 5, 2, 6, 1, 1, 2, 9, 4, 4, 9, 1, 9, 4, 0, 5, 8, 9, 7, 3, 9, 5, 1, 7, 8, 7, 9, 4, 1, 5, 5, 5, 0, 9, 1, 9, 6, 3, 4, 1, 9, 9, 9, 3, 9, 4, 6, 9, 7, 5, 5, 8, 4, 0, 1, 4, 4, 7, 1, 7, 0, 4, 2, 5, 4, 7, 5, 8, 2, 0, 2, 4, 9, 0, 4, 7, 0, 8, 0, 9, 5, 4, 7, 0, 1, 4, 0, 9, 0, 1, 5, 2, 5, 6, 6, 8, 6, 6, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arccos(-sqrt(2/3)) = 2.5261129449405...
		

Crossrefs

Cf. A195701.

Programs

  • Magma
    [Arccos(-Sqrt(2/3))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[2/3];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A195696 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A195695 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A195702 *)
    RealDigits[ArcCos[-Sqrt[(2/3)]],10,120][[1]] (* Harvey P. Dale, Jan 15 2013 *)
  • PARI
    acos(-sqrt(2/3)) \\ G. C. Greubel, Nov 18 2017
    

Formula

Equals Pi - arcsin(sqrt(1/3)) = Pi - arctan(sqrt(1/2)). - Amiram Eldar, Jul 10 2023

A243445 Decimal expansion of the polar angle of the cone circumscribed to a regular dodecahedron from one of its vertices.

Original entry on oeis.org

1, 2, 0, 5, 9, 3, 2, 4, 9, 8, 6, 8, 1, 4, 1, 3, 4, 3, 7, 5, 0, 3, 9, 2, 3, 3, 6, 1, 7, 3, 3, 0, 9, 1, 0, 9, 4, 4, 0, 0, 3, 3, 1, 7, 4, 2, 6, 6, 3, 6, 9, 6, 0, 6, 5, 1, 3, 2, 9, 9, 7, 5, 5, 0, 4, 2, 2, 9, 9, 8, 7, 5, 3, 3, 0, 9, 7, 2, 0, 9, 2, 9, 9, 1, 6, 2, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 06 2014

Keywords

Comments

The angle is in radians.

Examples

			1.20593249868141343750392336173309109440033174266369606513299755...
		

Crossrefs

Cf. A001622 (phi), A003881 (octahedron), A195695 (tetrahedron), A195696 (cube), A195723 (isosahedron).

Programs

  • Mathematica
    RealDigits[ArcCos[1/(GoldenRatio Sqrt[3])],10,120][[1]] (* Harvey P. Dale, May 17 2016 *)
  • PARI
    acos(2/(1+sqrt(5))/sqrt(3))

Formula

arccos(1/(phi*sqrt(3))), where phi = A001622.
arctan(phi^2), where phi = A001622. - Jon Maiga, Nov 11 2018

A377202 Decimal expansion of Integral_{x=0..oo} exp(-x)*erf(sqrt(x))^2 dx, where erf is the error function.

Original entry on oeis.org

5, 5, 4, 1, 2, 6, 4, 2, 3, 9, 7, 9, 5, 7, 1, 9, 8, 7, 1, 2, 3, 0, 7, 8, 8, 3, 4, 5, 3, 7, 9, 0, 2, 7, 1, 8, 9, 2, 2, 9, 4, 9, 5, 7, 9, 3, 9, 6, 0, 5, 6, 4, 6, 9, 2, 4, 0, 4, 7, 3, 1, 9, 8, 7, 3, 8, 3, 1, 0, 8, 4, 7, 1, 0, 7, 1, 3, 4, 1, 7, 9, 4, 6, 3, 8, 1, 5, 4, 5, 5
Offset: 0

Views

Author

Paolo Xausa, Oct 19 2024

Keywords

Examples

			0.554126423979571987123078834537902718922949579396...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[8]*ArcCot[Sqrt[2]]/Pi, 10, 100]]

Formula

Equals 2*sqrt(2)*arccot(sqrt(2))/Pi = A010466*A195695/A000796 (cf. eq. 37 in Weisstein link).
Showing 1-8 of 8 results.