cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A156546 Decimal expansion of the central angle of a regular tetrahedron.

Original entry on oeis.org

1, 9, 1, 0, 6, 3, 3, 2, 3, 6, 2, 4, 9, 0, 1, 8, 5, 5, 6, 3, 2, 7, 7, 1, 4, 2, 0, 5, 0, 3, 1, 5, 1, 5, 5, 0, 8, 4, 8, 6, 8, 2, 9, 3, 9, 0, 0, 2, 0, 0, 1, 0, 9, 8, 1, 9, 1, 9, 3, 9, 6, 2, 5, 8, 6, 4, 3, 8, 2, 4, 0, 9, 1, 8, 0, 7, 9, 5, 2, 9, 1, 0, 7, 7, 4, 7, 8, 3, 2, 0, 5, 1, 7, 1, 2, 5, 6, 1, 4, 6, 8, 4, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If O is the center of a regular tetrahedron ABCD, then the central angle AOB is this number; exact value is Pi - arccos(1/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- cube: A137914,
- octahedron: A019669,
- dodecahedron: A156547,
- icosahedron: A105199.
Dihedral angle of two adjacent faces of the octahedron. - R. J. Mathar, Mar 24 2012
Best known as "tetrahedral angle" theta (e.g., in chemistry). Its Pi complement (i.e., Pi - theta) is the dihedral angle between adjacent faces in regular tetrahedron. - Stanislav Sykora, May 31 2012
Also twice the magic angle (A195696). - Stanislav Sykora, Nov 14 2013

Examples

			Pi - arccos(1/3) = 1.910633236249018556..., or, in degrees, 109.471220634490691369245999339962435963006843100... = A247412
		

Crossrefs

Cf. Platonic solids dihedral angles: A137914 (tetrahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Start with vertices (1,1,1), (1,-1,-1,), (-1,1,-1), and (1,-1,1) and apply the formula for cosine of the angle between two vectors.
Equals 2* A195696. - R. J. Mathar, Mar 24 2012
Equals A000796 - A137914 = A247412 / A072097 - R. J. Mathar, Feb 18 2025

A137218 Decimal expansion of the argument of -1 + 2*i.

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 3, 9, 3, 5, 7, 9, 5, 7, 0, 2, 7, 3, 5, 4, 4, 5, 5, 7, 7, 9, 2, 3, 1, 0, 0, 9, 6, 5, 8, 4, 4, 1, 2, 7, 1, 2, 1, 7, 5, 3, 9, 7, 3, 6, 7, 3, 1, 7, 4, 2, 9, 8, 4, 0, 5, 3, 8, 4, 8, 7, 4, 1, 0, 6, 0, 6, 7, 3, 0, 8, 8, 4, 6, 2, 0, 4, 6, 1, 4, 6, 1, 7, 6, 9, 6, 6, 5, 5, 9, 4, 6, 4, 2, 6, 5, 4, 7, 6, 0
Offset: 1

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Mar 06 2008

Keywords

Comments

Gives closed forms for many arctangent values:
arctan(2) = Pi - a, arctan(1/2) = a - Pi/2,
arctan(3) = a - Pi/4, arctan(1/3) = 3*Pi/4 - a,
arctan(7) = 7*Pi/4 - 2*a, arctan(1/7) = 2*a - 5*Pi/4,
arctan(4/3) = 2*a - Pi and arctan(3/4) = 3*Pi/2 - 2*a.
Dihedral angle in the dodecahedron (radians). - R. J. Mathar, Mar 24 2012
Larger interior angle (in radians) of a golden rhombus; A105199 is the smaller interior angle. - Eric W. Weisstein, Dec 17 2018

Examples

			2.0344439357957027354455779231...
		

Crossrefs

Platonic solids' dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A236367 (icosahedron). - Stanislav Sykora, Jan 23 2014
Cf. A242723 (same in degrees).
Cf. A105199 (smaller interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[Pi - ArcTan[2], 10, 120][[1]] (* Harvey P. Dale, Aug 08 2014 *)
  • PARI
    default(realprecision, 120);
    acos(-1/sqrt(5)) \\ or
    arg(-1+2*I) \\ Rick L. Shepherd, Jan 26 2014

Formula

Equals Pi - arctan(2) = A000796 - A105199 = 2*A195723.

Extensions

Corrected a typo in the sequence Matt Rieckman (mjr162006(AT)yahoo.com), Feb 05 2010
More terms from Rick L. Shepherd, Jan 26 2014

A005486 Decimal expansion of cube root of 6.

Original entry on oeis.org

1, 8, 1, 7, 1, 2, 0, 5, 9, 2, 8, 3, 2, 1, 3, 9, 6, 5, 8, 8, 9, 1, 2, 1, 1, 7, 5, 6, 3, 2, 7, 2, 6, 0, 5, 0, 2, 4, 2, 8, 2, 1, 0, 4, 6, 3, 1, 4, 1, 2, 1, 9, 6, 7, 1, 4, 8, 1, 3, 3, 4, 2, 9, 7, 9, 3, 1, 3, 0, 9, 7, 3, 9, 4, 5, 9, 3, 0, 1, 8, 6, 5, 6, 4, 7, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Diameter of a sphere with volume Pi. - Omar E. Pol, Aug 09 2012
Also the height h that minimizes the total surface area (including the base) of a square pyramid of unit volume: at h = 6^(1/3), the surface area reaches its minimum value, 12*6^(-1/3) = 12/h. The ratio of its height to the length of one of its sides is h/sqrt(3/h) = sqrt(2), and the slope of its four triangular faces is arctan(sqrt(8)) = 70.528779... degrees (cf. A137914). (For the height that minimizes the total surface area of just the four triangular faces of a square pyramid of unit volume -- i.e., excluding the base -- see A319034.) - Jon E. Schoenfield, Nov 10 2018

Examples

			1.81712059283213965889121175632726050242821....
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002949 = Continued fraction. - Harry J. Smith, May 07 2009

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 6^(1/3); // G. C. Greubel, Nov 12 2018
  • Mathematica
    RealDigits[N[6^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=6^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005486.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009
    

Extensions

More terms from Jon E. Schoenfield, Mar 11 2018

A236367 Dihedral angle in a regular icosahedron (radians).

Original entry on oeis.org

2, 4, 1, 1, 8, 6, 4, 9, 9, 7, 3, 6, 2, 8, 2, 6, 8, 7, 5, 0, 0, 7, 8, 4, 6, 7, 2, 3, 4, 6, 6, 1, 8, 2, 1, 8, 8, 8, 0, 0, 6, 6, 3, 4, 8, 5, 3, 2, 7, 3, 9, 2, 1, 3, 0, 2, 6, 5, 9, 9, 5, 1, 0, 0, 8, 4, 5, 9, 9, 7, 5, 0, 6, 6, 1, 9, 4, 4, 1, 8, 5, 9, 8, 3, 2, 5, 5, 1, 4, 1, 7, 5, 2, 2, 6, 4, 3, 5, 6, 7, 7, 7, 4, 0, 5
Offset: 1

Views

Author

Stanislav Sykora, Jan 23 2014

Keywords

Examples

			2.41186499736282687500784672346618218880066348532739213...
		

Crossrefs

Cf. A001622, Platonic solids dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A137218 (dodecahedron).

Programs

  • Mathematica
    RealDigits[2 * ArcTan[GoldenRatio^2], 10, 120][[1]] (* Amiram Eldar, May 17 2023 *)
  • PARI
    2*atan((3+sqrt(5))/2)

Formula

Equals 2*arctan(phi^2) = 2*arctan(A001622^2) = 2*arctan((3+sqrt(5))/2).

A378208 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis tetrahedron.

Original entry on oeis.org

2, 2, 6, 0, 5, 7, 1, 3, 2, 7, 5, 8, 0, 3, 9, 6, 2, 7, 9, 3, 4, 1, 3, 5, 7, 8, 1, 1, 6, 0, 8, 6, 5, 5, 9, 6, 5, 5, 5, 5, 2, 8, 4, 1, 8, 0, 5, 3, 8, 1, 2, 6, 2, 4, 1, 4, 3, 2, 0, 8, 6, 9, 2, 9, 0, 2, 4, 3, 4, 2, 7, 6, 4, 6, 3, 1, 4, 2, 4, 7, 7, 2, 1, 0, 8, 6, 3, 9, 2, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 21 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			2.2605713275803962793413578116086559655552841805381...
		

Crossrefs

Cf. A378204 (surface area), A378205 (volume), A378206 (inradius), A378207 (midradius).
Cf. A137914 and A156546 (dihedral angles of a truncated tetrahedron).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/11], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TriakisTetrahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-7/11).

A238238 Decimal expansion of the polar angle, in radians, of a cone which makes a golden-ratio cut of the full solid angle.

Original entry on oeis.org

1, 3, 3, 2, 4, 7, 8, 8, 6, 4, 9, 8, 5, 0, 3, 0, 5, 1, 0, 2, 0, 8, 0, 0, 9, 7, 9, 1, 9, 5, 5, 5, 8, 5, 4, 4, 1, 3, 3, 4, 9, 8, 0, 2, 7, 7, 4, 5, 1, 8, 9, 5, 6, 8, 5, 6, 6, 2, 9, 4, 7, 6, 8, 5, 6, 0, 7, 9, 5, 7, 9, 7, 8, 7, 5, 8, 1, 1, 8, 5, 6, 3, 4, 1, 5, 8, 1
Offset: 1

Views

Author

Stanislav Sykora, Feb 20 2014

Keywords

Comments

The polar angle (or apex angle) of a cone which cuts a fraction f of the full solid angle (i.e., subtends a solid angle of 4*Pi*f steradians) is given by arccos(1-2*f). For a golden cut of the sphere surface by a cone with apex in its center, set f = 1-1/phi, phi being the golden ratio A001622. This value is in radians, its equivalent in degrees is A238239.
The apex angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022

Examples

			1.3324788649850305102080097919555854413349802774518956856629476856...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[2/GoldenRatio  -1],10,120][[1]] (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    acos(4/(1+sqrt(5))-1)

Formula

arccos(1-2*(1-1/phi)) = arccos(2/phi-1), with phi = A001622.

A363437 Decimal expansion of the volume of the regular tetrahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

5, 1, 3, 2, 0, 0, 2, 3, 9, 2, 7, 9, 6, 6, 7, 3, 4, 6, 2, 3, 0, 3, 5, 4, 4, 7, 1, 5, 5, 7, 2, 9, 5, 5, 1, 6, 1, 3, 1, 2, 0, 1, 5, 5, 6, 6, 8, 4, 5, 5, 7, 2, 2, 3, 1, 2, 7, 6, 4, 6, 5, 1, 2, 4, 3, 0, 2, 0, 2, 3, 7, 5, 3, 8, 0, 3, 8, 5, 1, 9, 6, 1, 7, 2, 1, 9, 1, 4, 6, 2, 7, 4, 2, 8, 8, 8, 4, 6, 6, 8, 6, 6, 8, 5, 2
Offset: 0

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			0.51320023927966734623035447155729551613120155668455...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363438 (regular dodecahedron).
Other constants related to the regular tetrahedron: A020781, A020829, A137914, A156546, A187110, A210974, A232812, A236555.

Programs

Formula

Equals 8/(9*sqrt(3)).
Equals A118273 / 3.
Equals A020829 / A187110 ^ 3.

A387294 Decimal expansion of the largest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

2, 9, 5, 7, 0, 8, 0, 0, 7, 9, 6, 3, 5, 4, 4, 8, 1, 5, 1, 5, 6, 1, 8, 7, 2, 5, 8, 1, 3, 4, 5, 0, 3, 7, 6, 5, 3, 0, 5, 1, 8, 0, 8, 7, 0, 0, 4, 0, 8, 9, 9, 7, 9, 2, 3, 0, 0, 0, 5, 1, 8, 7, 0, 3, 7, 2, 7, 8, 5, 7, 5, 7, 7, 5, 3, 2, 0, 1, 3, 8, 4, 9, 7, 2, 2, 0, 0, 6, 3, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 25 2025

Keywords

Comments

This is the dihedral angle between a triangular face in the antiprism part of the solid and a triangular face in the cupola part of the solid.
Also the analogous dihedral angle in a gyroelongated triangular bicupola (Johnson solid J_44).

Examples

			2.9570800796354481515618725813450376530518087004...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387295, A387296, A387297.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A385256 (J_44 volume), A385257 (J_44 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[3] + ArcCos[1 - Sqrt[12]/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J22", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(1/3) + arccos(1 - 2*sqrt(3)/3) = A137914 + arccos(-A246724).

A156547 Decimal expansion of the central angle of a regular dodecahedron.

Original entry on oeis.org

7, 2, 9, 7, 2, 7, 6, 5, 6, 2, 2, 6, 9, 6, 6, 3, 6, 3, 4, 5, 4, 7, 9, 6, 6, 5, 9, 8, 1, 3, 3, 2, 0, 6, 9, 5, 3, 9, 6, 5, 0, 5, 9, 1, 4, 0, 4, 7, 7, 1, 3, 6, 9, 0, 7, 0, 8, 9, 4, 9, 4, 9, 1, 4, 6, 1, 8, 1, 8, 8, 9, 9, 6, 6, 6, 7, 6, 7, 1, 3, 8, 7, 9, 5, 4, 8, 3, 4, 0, 7, 8, 1, 9, 4, 7, 3, 5, 0, 0, 2, 0, 8, 0, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If A and B are neighboring vertices of a regular dodecahedron having center O, then the central angle AOB is this number; the exact value is arccos((1/3)*sqrt(5)) = arcsin(2/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- tetrahedron: A156546,
- cube: A137914,
- octahedron: A019669,
- icosahedron: A105199.

Examples

			arccos((1/3)*sqrt(5))=0.729727656226966..., or, in degrees,
41.810314895778598065857916730578259531014119535901347753...
		

Crossrefs

Programs

Formula

The dodecahedron has 12 faces and 20 vertices. To find the central angle, we need any neighboring pair of vertices. Here are all 20 vertices:
- (d,d,d) where d is 1 or -1 (that's 8 vertices);
- (0, d*(t-1),d*t), where d is 1 or -1 and d = golden ratio = (1+sqrt(5))/2;
- (d*(t-1), d*t, 0); and ((d*t,0,d*(t-1)).
An example of a neighboring pair is (1,1,1) and (0,t,t-1).
Apply the usual formula for the cosine of the angle between two vectors.
Equals 2 * arccot(phi^2), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Showing 1-10 of 19 results. Next