cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002580 Decimal expansion of cube root of 2.

Original entry on oeis.org

1, 2, 5, 9, 9, 2, 1, 0, 4, 9, 8, 9, 4, 8, 7, 3, 1, 6, 4, 7, 6, 7, 2, 1, 0, 6, 0, 7, 2, 7, 8, 2, 2, 8, 3, 5, 0, 5, 7, 0, 2, 5, 1, 4, 6, 4, 7, 0, 1, 5, 0, 7, 9, 8, 0, 0, 8, 1, 9, 7, 5, 1, 1, 2, 1, 5, 5, 2, 9, 9, 6, 7, 6, 5, 1, 3, 9, 5, 9, 4, 8, 3, 7, 2, 9, 3, 9, 6, 5, 6, 2, 4, 3, 6, 2, 5, 5, 0, 9, 4, 1, 5, 4, 3, 1, 0, 2, 5
Offset: 1

Views

Author

Keywords

Comments

2^(1/3) is Hermite's constant gamma_3. - Jean-François Alcover, Sep 02 2014, after Steven Finch.
For doubling the cube using origami and a standard geometric construction employing two right angles see the W. Lang link, Application 2, p. 14, and the references given there. See also the L. Newton link. - Wolfdieter Lang, Sep 02 2014
Length of an edge of a cube with volume 2. - Jared Kish, Oct 16 2014
For any positive real c, the mappings R(x)=(c*x)^(1/4) and S(x)=sqrt(c/x) have the same unique attractor c^(1/3), to which their iterated applications converge from any complex plane point. The present case is obtained setting c=2. It is noteworthy that in this way one can evaluate cube roots using only square roots. The CROSSREFS list some other cases of cube roots to which this comment might apply. - Stanislav Sykora, Nov 11 2015
The cube root of any positive number can be connected to the Philo lines (or Philon lines) for a 90-degree angle. If the equation x^3-2 is represented using Lill's method, it can be shown that the path of the root 2^(1/3) creates the shortest segment (Philo line) from the x axis through (1,2) to the y axis. For more details see the article "Lill's method and the Philo Line for Right Angles" linked below. - Raul Prisacariu, Apr 06 2024

Examples

			1.2599210498948731647672106072782283505702514...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 192-193.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.3 Euclidean Construction, pp. 84, 421.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data. Scripta Math. 18, (1952). 173-176.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, pp. 33-34.

Crossrefs

Cf. A002945 (continued fraction), A270714 (reciprocal), A253583.
Cf. A246644.

Programs

  • Maple
    Digits:=100: evalf(2^(1/3)); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    RealDigits[N[2^(1/3), 5!]] (* Vladimir Joseph Stephan Orlovsky, Sep 04 2008 *)
  • PARI
    default(realprecision, 20080); x=2^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002580.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009
    
  • PARI
    default(realprecision, 100); x= 2^(1/3); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", "))  \\ Altug Alkan, Nov 14 2015

Formula

(-2^(1/3) - 2^(1/3) * sqrt(-3))^3 = (-2^(1/3) + 2^(1/3) * sqrt(-3))^3 = 16. - Alonso del Arte, Jan 04 2015
Set c=2 in the identities c^(1/3) = sqrt(c/sqrt(c/sqrt(c/...))) = sqrt(sqrt(c*sqrt(sqrt(c*sqrt(sqrt(...)))))). - Stanislav Sykora, Nov 11 2015
Equals Product_{k>=0} (1 + (-1)^k/(3*k + 2)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 01 2022: (Start)
Equals Sum_{n >= 0} (1/(3*n+1) - 1/(3*n-2))*binomial(1/3,n) = (3/2)* hypergeom([-1/3, -2/3], [4/3], -1). Cf. A290570.
Equals 4/3 - 4*Sum_{n >= 1} binomial(1/3,2*n+1)/(6*n-1) = (4/3)*hypergeom ([1/2, -1/6], [3/2], 1).
Equals hypergeom([-2/3, -1/6], [1/2], 1).
Equals hypergeom([2/3, 1/6], [4/3], 1). (End)

A002949 Continued fraction for cube root of 6.

Original entry on oeis.org

1, 1, 4, 2, 7, 3, 508, 1, 5, 5, 1, 1, 1, 2, 1, 1, 24, 1, 1, 1, 3, 3, 30, 4, 10, 158, 6, 1, 1, 2, 12, 1, 10, 1, 1, 3, 2, 1, 1, 89, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 18, 1, 17, 2, 2, 10, 14, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 26, 1, 4, 65, 1, 1, 1, 27, 1, 2, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			6^(1/3) = 1.81712059283213965... = 1 + 1/(1 + 1/(4 + 1/(2 + 1/(7 + ...)))). - _Harry J. Smith_, May 08 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005486 (decimal expansion).
Cf. A002359, A002360 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(6^(1/3)); // G. C. Greubel, Nov 02 2018
  • Maple
    with(numtheory):
    cfrac(6^(1/3),100,'quotients'); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    ContinuedFraction[6^(1/3), 100] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(6^(1/3)); for (n=1, 20000, write("b002949.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A002359 Denominators of continued fraction convergents to cube root of 6.

Original entry on oeis.org

1, 1, 5, 11, 82, 257, 130638, 130895, 785113, 4056460, 4841573, 8898033, 13739606, 36377245, 50116851, 86494096, 2125975155, 2212469251, 4338444406, 6550913657, 23991185377, 78524469788, 2379725279017, 9597425585856, 98353981137577
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002360 (numerators), A002949, A005486.

Programs

  • Mathematica
    Denominator[Convergents[Power[6, (3)^-1],30]] (* Harvey P. Dale, Nov 26 2011 *)
  • PARI
    a(n) = contfracpnqn(contfrac(6^(1/3), n))[2, 1]; \\ Michel Marcus, Aug 23 2013

Extensions

More terms from Herman P. Robinson
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Definition clarified by Harvey P. Dale, Nov 26 2011
Offset changed by Andrew Howroyd, Jul 05 2024

A002360 Numerators of continued fraction convergents to cube root of 6.

Original entry on oeis.org

1, 2, 9, 20, 149, 467, 237385, 237852, 1426645, 7371077, 8797722, 16168799, 24966521, 66101841, 91068362, 157170203, 3863153234, 4020323437, 7883476671, 11903800108, 43594876995, 142688431093, 4324247809785, 17439679670233, 178721044512115, 28255364712584403
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002359 (denominators), A002949, A005486.

Programs

  • Mathematica
    Numerator[Convergents[Power[6, (3)^-1],30]] (* Harvey P. Dale, Oct 16 2011 *)
  • PARI
    a(n) = contfracpnqn(contfrac(6^(1/3), n))[1, 1]; \\ Michel Marcus, Aug 23 2013

Extensions

Definition clarified by, and more terms from, Harvey P. Dale, Oct 16 2011
Offset changed by Andrew Howroyd, Jul 05 2024

A319034 Decimal expansion of the height that minimizes the total surface area of the four triangular faces of a square pyramid of unit volume.

Original entry on oeis.org

1, 1, 4, 4, 7, 1, 4, 2, 4, 2, 5, 5, 3, 3, 3, 1, 8, 6, 7, 8, 0, 8, 0, 4, 2, 2, 1, 1, 9, 3, 9, 6, 7, 7, 0, 0, 8, 9, 1, 5, 9, 0, 6, 9, 2, 0, 7, 8, 7, 9, 3, 1, 0, 7, 2, 0, 9, 9, 0, 5, 2, 1, 7, 4, 0, 6, 5, 6, 7, 4, 2, 9, 9, 0, 2, 4, 2, 1, 4, 1, 5, 0, 4, 3, 7, 6, 0, 8, 1, 6, 1, 0, 3, 0, 9, 1, 7, 0, 4, 5
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 22 2018

Keywords

Comments

A square pyramid with a height of h and a base of size s X s has volume V = (1/3)*s^2*h, so a square pyramid of unit volume has s = sqrt(3/h), and the slant height of each of the four triangular faces is t = sqrt(h^2 + (s/2)^2) = sqrt(h^2 + 3/(4*h)), and the total area of the four faces is A = 4*(s*t/2) = sqrt(12*h^3 + 9)/h; this area is minimized at h = (3/2)^(1/3), where it reaches A = 3^(7/6)*2^(1/3).
If the total surface area of all five faces including the square base is to be minimized, then the resulting height is 6^(1/3) (cf. A005486). - Jon E. Schoenfield, Nov 11 2018

Examples

			1.14471424255333186780804221193967700891590692078793...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[3/2, 3], 10, 120][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    sqrtn(3/2, 3) \\ Michel Marcus, Oct 23 2018

Formula

Equals (3/2)^(1/3) = (1/2)*A010584.
Equals A002581/A002580. - Michel Marcus, Oct 23 2018

A010648 Decimal expansion of cube root of 78.

Original entry on oeis.org

4, 2, 7, 2, 6, 5, 8, 6, 8, 1, 6, 9, 7, 9, 1, 6, 8, 2, 4, 9, 8, 7, 7, 2, 8, 5, 2, 9, 2, 4, 2, 4, 9, 0, 8, 5, 8, 9, 1, 6, 7, 0, 8, 8, 8, 0, 1, 5, 4, 8, 7, 2, 9, 0, 7, 1, 0, 7, 8, 5, 5, 2, 3, 0, 1, 9, 1, 7, 9, 2, 2, 7, 1, 6, 3, 6, 6, 2, 5, 3, 3, 7, 2, 2, 6, 9, 7, 3, 4, 1, 1, 5, 6, 0, 0, 5, 1, 8, 4
Offset: 1

Views

Author

Keywords

Programs

Formula

Equals A005486*A010585 = A002581*A010598. [Bruno Berselli, Mar 29 2013]

A210973 Decimal expansion of cube root of (3/4).

Original entry on oeis.org

9, 0, 8, 5, 6, 0, 2, 9, 6, 4, 1, 6, 0, 6, 9, 8, 2, 9, 4, 4, 5, 6, 0, 5, 8, 7, 8, 1, 6, 3, 6, 3, 0, 2, 5, 1, 2, 1, 4, 1, 0, 5, 2, 3, 1, 5, 7, 0, 6, 0, 9, 8, 3, 5, 7, 4, 0, 6, 6, 7, 1, 4, 8, 9, 6, 5, 6, 5, 4, 8, 6, 9, 7, 2, 9
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2012

Keywords

Comments

Radius of a sphere with volume Pi.

Examples

			0.908560296416069829445605878... =  A002581 / A005480.
		

Crossrefs

Cube root of A152627.
Cf. A005486.

Programs

Formula

(3/4)^(1/3).

A281143 Decimal expansion of 10!^(1/10).

Original entry on oeis.org

4, 5, 2, 8, 7, 2, 8, 6, 8, 8, 1, 1, 6, 7, 6, 4, 7, 6, 2, 2, 0, 3, 3, 0, 9, 3, 3, 7, 1, 9, 5, 5, 0, 8, 7, 9, 3, 4, 9, 8, 6, 3, 1, 6, 7, 6, 0, 8, 9, 3, 9, 0, 4, 6, 2, 8, 8, 6, 1, 1, 4, 7, 6, 0, 4, 6, 9, 2, 6, 2, 5, 5, 3, 8, 4, 5, 4, 1, 2, 8, 3, 9, 0, 7, 5, 1, 7, 7, 2, 4, 6, 5, 8, 2, 8, 8, 4, 9, 9, 4, 5, 8, 3, 1, 7
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2017

Keywords

Comments

Base b such that log_b 10! = 10.
Inspired by the idea of utilizing the log scaled to 10! being 10, i.e., log_b 10! = 10, therefore b = 2^(4/5)*3^(2/5)*5^(1/5)*7^(1/10).

Examples

			4.52872868811676476220330933719550879349863167608939046288611476046926255...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^(4/5) 3^(2/5) 5^(1/5) 7^(1/10), 10, 111][[1]] (* or *)
    RealDigits[Solve[Log[b, 10!] == 10, b][[1, 1, 2]], 10, 105][[1]]

Formula

Showing 1-8 of 8 results.