cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002949 Continued fraction for cube root of 6.

Original entry on oeis.org

1, 1, 4, 2, 7, 3, 508, 1, 5, 5, 1, 1, 1, 2, 1, 1, 24, 1, 1, 1, 3, 3, 30, 4, 10, 158, 6, 1, 1, 2, 12, 1, 10, 1, 1, 3, 2, 1, 1, 89, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 18, 1, 17, 2, 2, 10, 14, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 26, 1, 4, 65, 1, 1, 1, 27, 1, 2, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			6^(1/3) = 1.81712059283213965... = 1 + 1/(1 + 1/(4 + 1/(2 + 1/(7 + ...)))). - _Harry J. Smith_, May 08 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005486 (decimal expansion).
Cf. A002359, A002360 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(6^(1/3)); // G. C. Greubel, Nov 02 2018
  • Maple
    with(numtheory):
    cfrac(6^(1/3),100,'quotients'); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    ContinuedFraction[6^(1/3), 100] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(6^(1/3)); for (n=1, 20000, write("b002949.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A002360 Numerators of continued fraction convergents to cube root of 6.

Original entry on oeis.org

1, 2, 9, 20, 149, 467, 237385, 237852, 1426645, 7371077, 8797722, 16168799, 24966521, 66101841, 91068362, 157170203, 3863153234, 4020323437, 7883476671, 11903800108, 43594876995, 142688431093, 4324247809785, 17439679670233, 178721044512115, 28255364712584403
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002359 (denominators), A002949, A005486.

Programs

  • Mathematica
    Numerator[Convergents[Power[6, (3)^-1],30]] (* Harvey P. Dale, Oct 16 2011 *)
  • PARI
    a(n) = contfracpnqn(contfrac(6^(1/3), n))[1, 1]; \\ Michel Marcus, Aug 23 2013

Extensions

Definition clarified by, and more terms from, Harvey P. Dale, Oct 16 2011
Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-2 of 2 results.