cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000740 Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement; also Dirichlet convolution of b_n=2^(n-1) with mu(n); also number of components of Mandelbrot set corresponding to Julia sets with an attractive n-cycle.

Original entry on oeis.org

1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, 8127, 16365, 32640, 65535, 130788, 262143, 523770, 1048509, 2096127, 4194303, 8386440, 16777200, 33550335, 67108608, 134209530, 268435455, 536854005, 1073741823, 2147450880
Offset: 1

Views

Author

Keywords

Comments

Also number of compositions of n into relatively prime parts (that is, the gcd of all the parts is 1). Also number of subsets of {1,2,..,n} containing n and consisting of relatively prime numbers. - Vladeta Jovovic, Aug 13 2003
Also number of perfect parity patterns that have exactly n columns (see A118141). - Don Knuth, May 11 2006
a(n) is odd if and only if n is squarefree (Tim Keller). - Emeric Deutsch, Apr 27 2007
a(n) is a multiple of 3 for all n>=3 (see Problem 11161 link). - Emeric Deutsch, Aug 13 2008
Row sums of triangle A143424. - Gary W. Adamson, Aug 14 2008
a(n) is the number of monic irreducible polynomials with nonzero constant coefficient in GF(2)[x] of degree n. - Michel Marcus, Oct 30 2016
a(n) is the number of aperiodic compositions of n, the number of compositions of n with relatively prime parts, and the number of compositions of n with relatively prime run-lengths. - Gus Wiseman, Dec 21 2017

Examples

			For n=4, there are 6 compositions of n into coprime parts: <3,1>, <2,1,1>, <1,3>, <1,2,1>, <1,1,2>, and <1,1,1,1>.
From _Gus Wiseman_, Dec 19 2017: (Start)
The a(6) = 27 aperiodic compositions are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1221), (1311), (2112), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
The a(6) = 27 compositions into relatively prime parts are:
  (111111),
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1122), (1131), (1212), (1221), (1311), (2112), (2121), (2211), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (51).
The a(6) = 27 compositions with relatively prime run-lengths are:
  (11112), (11121), (11211), (12111), (21111),
  (1113), (1131), (1212), (1221), (1311), (2112), (2121), (3111),
  (114), (123), (132), (141), (213), (231), (312), (321), (411),
  (15), (24), (42), (51),
  (6).
(End)
		

References

  • H. O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer-Verlag; contribution by A. Douady, p. 165.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A027375/2.
See A056278 for a variant.
First differences of A085945.
Column k=2 of A143325.
Row sums of A101391.

Programs

  • Maple
    with(numtheory): a[1]:=1: a[2]:=1: for n from 3 to 32 do div:=divisors(n): a[n]:=2^(n-1)-sum(a[n/div[j]],j=2..tau(n)) od: seq(a[n],n=1..32); # Emeric Deutsch, Apr 27 2007
    with(numtheory); A000740:=n-> add(mobius(n/d)*2^(d-1), d in divisors(n)); # N. J. A. Sloane, Oct 18 2012
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d]*2^(d - 1), {d, Divisors[n]}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 03 2012, after PARI *)
  • PARI
    a(n) = sumdiv(n,d,moebius(n/d)*2^(d-1))
    
  • Python
    from sympy import mobius, divisors
    def a(n): return sum([mobius(n // d) * 2**(d - 1) for d in divisors(n)])
    [a(n) for n in range(1, 101)]  # Indranil Ghosh, Jun 28 2017

Formula

a(n) = Sum_{d|n} mu(n/d)*2^(d-1), Mobius transform of A011782. Furthermore, Sum_{d|n} a(d) = 2^(n-1).
a(n) = A027375(n)/2 = A038199(n)/2.
a(n) = Sum_{k=0..n} A051168(n,k)*k. - Max Alekseyev, Apr 09 2013
Recurrence relation: a(n) = 2^(n-1) - Sum_{d|n,d>1} a(n/d). (Lafayette College Problem Group; see the Maple program and Iglesias eq (6)). - Emeric Deutsch, Apr 27 2007
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - 2*x^k). - Ilya Gutkovskiy, Oct 24 2018
G.f. satisfies Sum_{n>=1} A( (x/(1 + 2*x))^n ) = x. - Paul D. Hanna, Apr 02 2025

Extensions

Connection with Mandelbrot set discovered by Warren D. Smith and proved by Robert Munafo, Feb 06 2000
Ambiguous term a(0) removed by Max Alekseyev, Jan 02 2012

A002945 Continued fraction for cube root of 2.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
Offset: 0

Views

Author

Keywords

Examples

			2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).

Programs

  • Magma
    ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
  • Maple
    N:= 100: # to get a(1) to a(N)
    a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
    for n from 2 to N do
      a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
      p[n+1] := a[n]*p[n] + p[n-1];
      q[n+1] := a[n]*q[n] + q[n-1];
    od:
    seq(a[i],i=1..N); # Robert Israel, Jul 30 2014
  • Mathematica
    ContinuedFraction[Power[2, (3)^-1],70] (* Harvey P. Dale, Sep 29 2011 *)
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
    

Formula

From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)

Extensions

BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024

A003423 a(n) = a(n-1)^2 - 2, with a(0) = 6.

Original entry on oeis.org

6, 34, 1154, 1331714, 1773462177794, 3145168096065837266706434, 9892082352510403757550172975146702122837936996354
Offset: 0

Views

Author

Keywords

Comments

If x is either of the roots of x^2 - 6*x + 1 = 0 (i.e., x = 3 +- 2*sqrt(2)), then x^(2^n) + 1 = a(n)*x^(2^(n-1)). For example, x^8 + 1 = 1154*x^4. - James East, Oct 05 2018

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001566 (starting with 3), A003010 (starting with 4), A003487 (starting with 5).
Cf. A145505.

Programs

  • Maple
    a:= n-> simplify(2*ChebyshevT(2^n, 3), 'ChebyshevT'):
    seq(a(n), n=0..7);
  • Mathematica
    a[1] := 6; a[n_] := a[n - 1]^2 - 2; Table[a[n], {n, 1, 8}] (* Stefan Steinerberger, Apr 11 2006 *)
    Table[Round[(1 + Sqrt[2])^(2^n)], {n, 1, 7}] (* Artur Jasinski, Sep 25 2008 *)
    NestList[#^2-2&,6,10] (* Harvey P. Dale, Nov 11 2011 *)
  • PARI
    a(n)=if(n<1, 6*(n==0), a(n-1)^2-2)

Formula

a(n) = ceiling(c^(2^n)) where c = 3 + 2*sqrt(2) is the largest root of x^2 - 6x + 1 = 0. - Benoit Cloitre, Dec 03 2002
From Paul D. Hanna, Aug 11 2004: (Start)
a(n) = (3+sqrt(8))^(2^n) + (3-sqrt(8))^(2^n).
Sum_{n>=0} 1/(Product_{k=0..n} a(k) ) = 3 - sqrt(8). (End)
a(n) = 2*A001601(n+1).
a(n-1) = Round((1 + sqrt(2))^(2^n)). - Artur Jasinski, Sep 25 2008
a(n) = 2*T(2^n,3) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011
Engel expansion of 3 - 2*sqrt(2). Thus 3 - 2*sqrt(2) = 1/6 + 1/(6*34) + 1/(6*34*1154) + .... See Liardet and Stambul. - Peter Bala, Oct 31 2012
From Peter Bala, Nov 11 2012: (Start)
4*sqrt(2)/7 = Product_{n >= 0} (1 - 1/a(n))
sqrt(2) = Product_{n >= 0} (1 + 2/a(n)).
a(n) - 1 = A145505(n+1). (End)
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2 + 4*Product_{k = 0 ..n-1} (a(k) + 2) for n >= 1.
Let b(n) = a(n) - 6. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

A005486 Decimal expansion of cube root of 6.

Original entry on oeis.org

1, 8, 1, 7, 1, 2, 0, 5, 9, 2, 8, 3, 2, 1, 3, 9, 6, 5, 8, 8, 9, 1, 2, 1, 1, 7, 5, 6, 3, 2, 7, 2, 6, 0, 5, 0, 2, 4, 2, 8, 2, 1, 0, 4, 6, 3, 1, 4, 1, 2, 1, 9, 6, 7, 1, 4, 8, 1, 3, 3, 4, 2, 9, 7, 9, 3, 1, 3, 0, 9, 7, 3, 9, 4, 5, 9, 3, 0, 1, 8, 6, 5, 6, 4, 7, 1, 4
Offset: 1

Views

Author

Keywords

Comments

Diameter of a sphere with volume Pi. - Omar E. Pol, Aug 09 2012
Also the height h that minimizes the total surface area (including the base) of a square pyramid of unit volume: at h = 6^(1/3), the surface area reaches its minimum value, 12*6^(-1/3) = 12/h. The ratio of its height to the length of one of its sides is h/sqrt(3/h) = sqrt(2), and the slope of its four triangular faces is arctan(sqrt(8)) = 70.528779... degrees (cf. A137914). (For the height that minimizes the total surface area of just the four triangular faces of a square pyramid of unit volume -- i.e., excluding the base -- see A319034.) - Jon E. Schoenfield, Nov 10 2018

Examples

			1.81712059283213965889121175632726050242821....
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002949 = Continued fraction. - Harry J. Smith, May 07 2009

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 6^(1/3); // G. C. Greubel, Nov 12 2018
  • Mathematica
    RealDigits[N[6^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    default(realprecision, 20080); x=6^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005486.txt", n, " ", d));  \\ Harry J. Smith, May 07 2009
    

Extensions

More terms from Jon E. Schoenfield, Mar 11 2018

A002950 Continued fraction for fifth root of 2.

Original entry on oeis.org

1, 6, 1, 2, 1, 1, 1, 3, 25, 1, 4, 3, 3, 7, 52, 1, 2, 3, 2, 15, 2, 2, 4, 16, 2, 7, 1, 1, 1, 10, 21, 1, 1, 1, 141, 2, 4, 1, 4, 2, 1, 1, 17, 1, 3, 3, 4, 1, 3, 1, 3, 2, 1, 1, 2, 33, 1, 6, 6, 1, 2, 4, 1, 21, 1, 3, 3, 8, 10, 1, 46, 6, 1, 10, 1, 1, 1, 1, 2, 11, 1, 3, 1
Offset: 0

Views

Author

Keywords

Examples

			2^(1/5) = 1.148698354997035006798626946... = 1 + 1/(6 + 1/(1 + 1/(2 + 1/(1 + ...)))). - _Harry J. Smith_, May 12 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005531 (decimal expansion).
Cf. A002361, A002362 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(2^(1/5)); // G. C. Greubel, Nov 02 2018
  • Maple
    with(numtheory):
    cfrac(2^(1/5),100,'quotients'); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    ContinuedFraction[2^(1/5), 100] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/5)); for (n=1, 20000, write("b002950.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 12 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A002951 Continued fraction for fifth root of 5.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 2, 8, 1, 25, 1, 5, 1, 22, 1, 8, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 6, 2, 46, 1, 12, 1, 32, 1, 2, 3, 2, 3, 55, 1, 12, 3, 8, 1, 1, 11, 1, 4, 1, 1, 1, 2, 1, 1, 7, 1, 1, 4, 3, 3, 3218, 1, 3, 1, 2, 2, 3, 1, 1, 2, 11, 1, 7, 57, 2, 2, 2, 2, 1, 1, 67, 1, 2, 3, 1, 1, 13, 3
Offset: 0

Views

Author

Keywords

Comments

Fifth root of 5 = 5^(1/5). - Harry J. Smith, May 10 2009

Examples

			1.379729661461214832390063464... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, May 10 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005534 (decimal expansion).
Cf. A002363, A002364 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction(5^(1/5)); // G. C. Greubel, Nov 02 2018
  • Maple
    with(numtheory): cfrac(5^(1/5),100,'quotients'); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    ContinuedFraction[5^(1/5), 100] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(5^(1/5)); for (n=1, 20000, write("b002951.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 10 2009
    

Extensions

More terms copied from Smith's b-file by Hagen von Eitzen, Jul 20 2009
Offset changed by Andrew Howroyd, Jul 05 2024

A002359 Denominators of continued fraction convergents to cube root of 6.

Original entry on oeis.org

1, 1, 5, 11, 82, 257, 130638, 130895, 785113, 4056460, 4841573, 8898033, 13739606, 36377245, 50116851, 86494096, 2125975155, 2212469251, 4338444406, 6550913657, 23991185377, 78524469788, 2379725279017, 9597425585856, 98353981137577
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002360 (numerators), A002949, A005486.

Programs

  • Mathematica
    Denominator[Convergents[Power[6, (3)^-1],30]] (* Harvey P. Dale, Nov 26 2011 *)
  • PARI
    a(n) = contfracpnqn(contfrac(6^(1/3), n))[2, 1]; \\ Michel Marcus, Aug 23 2013

Extensions

More terms from Herman P. Robinson
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Definition clarified by Harvey P. Dale, Nov 26 2011
Offset changed by Andrew Howroyd, Jul 05 2024

A002360 Numerators of continued fraction convergents to cube root of 6.

Original entry on oeis.org

1, 2, 9, 20, 149, 467, 237385, 237852, 1426645, 7371077, 8797722, 16168799, 24966521, 66101841, 91068362, 157170203, 3863153234, 4020323437, 7883476671, 11903800108, 43594876995, 142688431093, 4324247809785, 17439679670233, 178721044512115, 28255364712584403
Offset: 0

Views

Author

Keywords

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
  • P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002359 (denominators), A002949, A005486.

Programs

  • Mathematica
    Numerator[Convergents[Power[6, (3)^-1],30]] (* Harvey P. Dale, Oct 16 2011 *)
  • PARI
    a(n) = contfracpnqn(contfrac(6^(1/3), n))[1, 1]; \\ Michel Marcus, Aug 23 2013

Extensions

Definition clarified by, and more terms from, Harvey P. Dale, Oct 16 2011
Offset changed by Andrew Howroyd, Jul 05 2024

A003117 Continued fraction for fifth root of 3.

Original entry on oeis.org

1, 4, 14, 2, 1, 1, 3, 2, 29, 2, 1, 7, 1, 5, 2, 1, 1, 19, 12, 77, 2, 16, 2, 1, 1, 15, 1, 1, 3, 14, 5, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 463, 1, 379, 3, 5, 3, 11, 1, 7, 7, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 46, 17, 44, 1, 1, 1, 2, 24, 9, 1, 7, 4, 1, 2, 2, 1, 3, 2, 7, 1, 7, 1, 1, 2, 1, 1, 4, 1, 46, 8, 2
Offset: 0

Views

Author

Keywords

Examples

			1.24573093961551732596668033... = 1 + 1/(4 + 1/(14 + 1/(2 + 1/(1 + ...)))). - _Harry J. Smith_, May 12 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005532 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Surd[3,5],120] (* Harvey P. Dale, Dec 15 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(3^(1/5)); for (n=1, 20000, write("b003117.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 12 2009

Extensions

More terms from James Sellers, Sep 08 2000
Offset changed by Andrew Howroyd, Jul 05 2024

A003118 Continued fraction for fifth root of 4.

Original entry on oeis.org

1, 3, 7, 1, 2, 2, 1, 2, 4, 56, 1, 14, 2, 1, 1, 3, 5, 6, 2, 1, 1, 2, 1, 1, 8, 1, 2, 2, 1, 5, 1, 4, 1, 1, 3, 3, 1, 1, 3, 7, 4, 1, 10, 1, 2, 1, 8, 2, 4, 1, 1, 9, 2, 2, 2, 1, 2, 1, 1, 1, 92, 1, 26, 4, 31, 1, 2, 4, 1, 62, 8, 5, 1, 1, 1, 2, 1, 1, 63, 1, 2, 5, 4, 2, 1
Offset: 0

Views

Author

Keywords

Examples

			1.319507910772894259374001971... = 1 + 1/(3 + 1/(7 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 11 2009
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005533 (decimal expansion).

Programs

  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(4^(1/5)); for (n=1, 20000, write("b003118.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 11 2009

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024
Showing 1-10 of 10 results.