cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A122553 a(0)=1, a(n)=3 for n > 0.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006

Keywords

Comments

Continued fraction for (sqrt(13) - 1)/2 = A223139.
Decimal expansion of 4/30. - Alonso del Arte, Aug 16 2012
4/3 is the volume of the regular octahedron inscribed in the unit-radius sphere. - Amiram Eldar, Jun 02 2023

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, pp. 95-96, 224.

Crossrefs

Cf. A118273 (cube), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).
Cf. A223139.

Programs

Formula

a(n) = 3 - 2*0^n.
G.f.: (1 + 2*x)/(1 - x).
Sum_{n >= 0} a(n)*10^(-n) = 4/3.
From Amiram Eldar, Jun 05 2021: (Start)
4/3 = Product_{k>=1} (1 + 1/2^(2^k)).
4/3 = Sum_{k>=0} binomial(2*k,k)/((k+2)*4^k). (End)
Sum_{k>0} 3*k/4^k = 4/3 [Nicole Oresme]. - Stefano Spezia, Jun 27 2024
K_{n>=3} n/(n-2) = 4/3 (see Clawson at p. 224). - Stefano Spezia, Jul 01 2024
E.g.f.: 3*exp(x) - 2. - Elmo R. Oliveira, Aug 05 2024

A339259 Decimal expansion of the volume of the regular icosahedron inscribed in the unit sphere.

Original entry on oeis.org

2, 5, 3, 6, 1, 5, 0, 7, 1, 0, 1, 2, 0, 4, 0, 9, 5, 2, 5, 6, 4, 3, 8, 3, 8, 2, 2, 2, 3, 4, 5, 0, 1, 9, 0, 4, 9, 0, 8, 1, 8, 6, 3, 0, 2, 4, 3, 3, 5, 3, 3, 3, 9, 2, 6, 5, 2, 6, 1, 4, 8, 3, 8, 5, 1, 4, 7, 0, 7, 5, 1, 2, 0, 2, 2, 7, 1, 8, 2, 6, 7, 1, 2, 5, 0, 1, 1
Offset: 1

Views

Author

Hugo Pfoertner, Nov 29 2020

Keywords

Examples

			2.536150710120409525643838222345019049081863024335333926526148385147...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).

Programs

  • Mathematica
    RealDigits[4 * Sqrt[GoldenRatio + 2]/3, 10, 120][[1]] (* Amiram Eldar, Jun 02 2023 *)
  • PARI
    4/3*sqrt(2+(1+sqrt(5))/2)

Formula

Equals 4*sqrt(2 + phi)/3 where phi = A001622.
Equals A102208 / A019881 ^ 3. - Amiram Eldar, Jun 02 2023

A118273 Decimal expansion of (4/3)^(3/2).

Original entry on oeis.org

1, 5, 3, 9, 6, 0, 0, 7, 1, 7, 8, 3, 9, 0, 0, 2, 0, 3, 8, 6, 9, 1, 0, 6, 3, 4, 1, 4, 6, 7, 1, 8, 8, 6, 5, 4, 8, 3, 9, 3, 6, 0, 4, 6, 7, 0, 0, 5, 3, 6, 7, 1, 6, 6, 9, 3, 8, 2, 9, 3, 9, 5, 3, 7, 2, 9, 0, 6, 0, 7, 1, 2, 6, 1, 4, 1, 1, 5, 5, 5, 8, 8, 5, 1, 6, 5, 7, 4, 3, 8, 8, 2, 2, 8, 6, 6, 5, 4, 0, 0, 6, 0, 0, 5, 5
Offset: 1

Views

Author

Eric W. Weisstein, Apr 21 2006

Keywords

Comments

The volume of the cube inscribed in the unit-radius sphere. - Amiram Eldar, Jun 02 2023

Examples

			1.539600717839002038...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412.

Crossrefs

Cf. A122553 (octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).

Programs

Formula

Equals 8 * A020784.

A363438 Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

2, 7, 8, 5, 1, 6, 3, 8, 6, 3, 1, 2, 2, 6, 2, 2, 9, 6, 7, 2, 9, 2, 5, 5, 4, 9, 1, 2, 7, 3, 5, 9, 4, 6, 9, 8, 7, 8, 9, 9, 3, 2, 1, 7, 7, 2, 0, 7, 6, 3, 3, 1, 9, 9, 2, 6, 3, 7, 0, 2, 4, 1, 4, 7, 4, 1, 6, 2, 5, 5, 1, 5, 0, 3, 2, 9, 1, 0, 6, 4, 9, 3, 0, 9, 4, 4, 4, 8, 5, 1, 3, 4, 7, 6, 6, 4, 8, 0, 8, 8, 0, 6, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			2.78516386312262296729255491273594698789932177207633...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron).
Cf. A001622.
Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798, A341906.

Programs

  • Mathematica
    RealDigits[(2*(5 + Sqrt[5]))/(3*Sqrt[3]), 10, 120][[1]]
  • PARI
    2*sqrt(5+sqrt(5))/sqrt(27) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals 2*sqrt(5+sqrt(5))/(3*sqrt(3)).
Equals 4*(phi+2)/(3*sqrt(3)), where phi is the golden ratio (A001622).
Equals A102769 / A179296 ^ 3.
Showing 1-4 of 4 results.