cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A039599 Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023

Examples

			Triangle T(n, k) begins:
  n\k     0     1     2     3     4     5    6   7   8  9
  0:      1
  1:      1     1
  2:      2     3     1
  3:      5     9     5     1
  4:     14    28    20     7     1
  5:     42    90    75    35     9     1
  6:    132   297   275   154    54    11    1
  7:    429  1001  1001   637   273    77   13   1
  8:   1430  3432  3640  2548  1260   440  104  15   1
  9:   4862 11934 13260  9996  5508  2244  663 135  17  1
  ... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
  1, 1,
  1, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
  2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
    
  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
    T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
  • Mathematica
    Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
    Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
    Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
    trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle
    def A039599_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True ; h = 1
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            if b : print([D[z] for z in (1..h-1)])
            b = not b
    A039599_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019

Extensions

Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009

A033484 a(n) = 3*2^n - 2.

Original entry on oeis.org

1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470
Offset: 0

Views

Author

Keywords

Comments

Number of nodes in rooted tree of height n in which every node (including the root) has valency 3.
Pascal diamond numbers: reflect Pascal's n-th triangle vertically and sum all elements. E.g., a(3)=1+(1+1)+(1+2+1)+(1+1)+1. - Paul Barry, Jun 23 2003
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2 and j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Binomial and inverse binomial transform are in A001047 (shifted) and A122553. - R. J. Mathar, Sep 02 2008
a(n) = (Sum_{k=0..n-1} a(n)) + (2*n + 1); e.g., a(3) = 22 = (1 + 4 + 10) + 7. - Gary W. Adamson, Jan 21 2009
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x and x and y are disjoint, or 1) x equals y. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Equals the Jacobsthal sequence A001045 convolved with (1, 3, 4, 4, 4, 4, 4, ...). - Gary W. Adamson, May 24 2009
Equals the eigensequence of a triangle with the odd integers as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 58, 154, 178 and 184, lead to this sequence. For the corner squares these vectors lead to the companion sequence A097813. - Johannes W. Meijer, Aug 15 2010
a(n+2) is the integer with bit string "10" * "1"^n * "10".
a(n) = A027383(2n). - Jason Kimberley, Nov 03 2011
a(n) = A153893(n)-1 = A083416(2n+1). - Philippe Deléham, Apr 14 2013
a(n) = A082560(n+1,A000079(n)) = A232642(n+1,A128588(n+1)). - Reinhard Zumkeller, May 14 2015
a(n) is the sum of the entries in the n-th and (n+1)-st rows of Pascal's triangle minus 2. - Stuart E Anderson, Aug 27 2017
Also the number of independent vertex sets and vertex covers in the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Sep 21 2017
Apparently, a(n) is the least k such that the binary expansion of A000045(k) ends with exactly n+1 ones. - Rémy Sigrist, Sep 25 2021
a(n) is the number of root ancestral configurations for a pair consisting of a matching gene tree and species tree with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110,
G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
		

References

  • J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.

Crossrefs

Programs

  • GAP
    List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
  • Haskell
    a033484 = (subtract 2) . (* 3) . (2 ^)
    a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Magma
    [3*2^n-2: n in [1..36]]; // Vincenzo Librandi, Nov 22 2010
    
  • Maple
    with(combinat):a:=n->stirling2(n,2)+stirling2(n+1,2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
    (* Start from Eric W. Weisstein, Sep 21 2017 *)
    3*2^Range[0, 35] - 2
    LinearRecurrence[{3, -2}, {1, 4}, 36]
    CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
  • PARI
    a(n) = 3<Charles R Greathouse IV, Nov 02 2011
    
  • Sage
    [3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
    

Formula

G.f.: (1+x)/(1-3*x+2*x^2).
a(n) = 2*(a(n-1) + 1) for n>0, with a(0)=1.
a(n) = A007283(n) - 2.
G.f. is equivalent to (1-2*x-3*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Paul Barry, Apr 28 2004
From Reinhard Zumkeller, Oct 09 2004: (Start)
A099257(a(n)) = A099258(a(n)) = a(n).
a(n) = 2*A055010(n) = (A068156(n) - 1)/2. (End)
Row sums of triangle A130452. - Gary W. Adamson, May 26 2007
Row sums of triangle A131110. - Gary W. Adamson, Jun 15 2007
Binomial transform of (1, 3, 3, 3, ...). - Gary W. Adamson, Oct 17 2007
Row sums of triangle A051597 (a triangle generated from Pascal's rule given right and left borders = 1, 2, 3, ...). - Gary W. Adamson, Nov 04 2007
Equals A132776 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
a(n) = Sum_{k=0..n} A112468(n,k)*3^k. - Philippe Deléham, Feb 23 2014
a(n) = -(2^n) * A036563(1-n) for all n in Z. - Michael Somos, Jul 04 2017
E.g.f.: 3*exp(2*x) - 2*exp(x). - G. C. Greubel, Nov 18 2019

A158799 a(0)=1, a(1)=2, a(n)=3 for n >= 2.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 27 2009

Keywords

Comments

a(n) = number of neighboring natural numbers of n (i.e., n, n - 1, n + 1). a(n) = number of natural numbers m such that n - 1 <= m <= n + 1. Generalization: If a(n,k) = number of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = a(n-1,k) + 1 = n + k for 0 <= n <= k, a(n,k) = a(n-1,k) = 2*k + 1 for n >= k + 1. - Jaroslav Krizek, Nov 18 2009
Partial sums of A130716; partial sums give A008486. - Jaroslav Krizek, Dec 06 2009
In atomic spectroscopy, a(n) is the number of P term symbols with spin multiplicity equal to n+1, i.e., there is one singlet-P term (n=0), there are two doublet-P terms (n=1), and there are three P terms for triple multiplicity (n=2) and higher (n>2). - A. Timothy Royappa, Mar 16 2012
a(n+1) is also the domination number of the n-Andrásfai graph. - Eric W. Weisstein, Apr 09 2016
Decimal expansion of 37/300. - Elmo R. Oliveira, May 11 2024
a(n+1) is also the domination number of the n X n rook complement graph. - Eric W. Weisstein, Mar 10 2025

Crossrefs

Programs

  • Mathematica
    PadRight[{1,2},120,{3}] (* or *) Min[#,3]&/@Range[120] (* Harvey P. Dale, Apr 08 2018 *)
  • PARI
    a(n)=if(n>1,3,if(n<0,0,n++))

Formula

G.f.: (1+x+x^2)/(1-x) = (1-x^3)/(1-x)^2.
a(n) = (n>=0)+(n>=1)+(n>=2).
a(n) = 1 + n for 0 <= n <= 1, a(n) = 3 for n >= 2. a(n) = A157532(n) for n >= 1. - Jaroslav Krizek, Nov 18 2009
E.g.f.: 3*exp(x) - x - 2 = x^2/(2*G(0)) where G(k) = 1 + (k+2)/(x - x*(k+1)/(x + k + 1 - x^4/(x^3 + (k+1)*(k+2)*(k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2012
a(n) = min(n+1,3). - Wesley Ivan Hurt, Apr 16 2014
a(n) = 1 + A130130(n). - Elmo R. Oliveira, May 11 2024

Extensions

Corrected by Jaroslav Krizek, Dec 17 2009

A336575 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 3^j * binomial(n,j) * binomial(k*n,j-1) for n > 0.

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 1, 3, 12, 3, 1, 3, 21, 57, 3, 1, 3, 30, 192, 300, 3, 1, 3, 39, 408, 2001, 1686, 3, 1, 3, 48, 705, 6402, 22539, 9912, 3, 1, 3, 57, 1083, 14799, 109137, 267276, 60213, 3, 1, 3, 66, 1542, 28488, 338430, 1964010, 3287496, 374988, 3, 1, 3, 75, 2082, 48765, 817743, 8181597, 36718680, 41556585, 2381322, 3
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,      1, ...
  3,    3,     3,      3,      3,      3, ...
  3,   12,    21,     30,     39,     48, ...
  3,   57,   192,    408,    705,   1083, ...
  3,  300,  2001,   6402,  14799,  28488, ...
  3, 1686, 22539, 109137, 338430, 817743, ...
		

Crossrefs

Columns k=0-4 give: A122553, A047891, A219535, A336538, A336540.
Main diagonal gives A336578.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[3^j * Binomial[n, j] * Binomial[k*n, j - 1], {j, 1, n}]/n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 27 2020 *)
  • PARI
    T(n, k) = if(n==0, 1, sum(j=1, n, 3^j*binomial(n, j)*binomial(k*n, j-1))/n);
    
  • PARI
    T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k*(2+A)); polcoeff(A, n);
    
  • PARI
    T(n, k) = sum(j=0, n, 2^(n-j)*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1));
    
  • PARI
    T(n, k) = sum(j=0, n, 2^j*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k * (2 + A_k(x)).
T(n,k) = Sum_{j=0..n} 2^(n-j) * binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
T(n,k) = (1/(k*n+1)) * Sum_{j=0..n} 2^j * binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
T(n,k) = (1/n) * Sum_{j=0..n-1} (-2)^j * 3^(n-j) * binomial(n,j) * binomial((k+1)*n-j,n-1-j) for n > 0. - Seiichi Manyama, Aug 10 2023
T(n,k) = 3*hypergeom([1-n, -k*n], [2], 3) for n > 0. - Stefano Spezia, Aug 09 2025

A278317 Number of neighbors of each new term in a right triangle read by rows.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 2, 4, 3, 2, 2, 4, 4, 3, 2, 2, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 18 2016

Keywords

Comments

To evaluate T(n,k) consider only the neighbors of T(n,k) that are present in the triangle when T(n,k) should be a new term in the triangle.
Apart from the first column and the first two diagonals the rest of the elements are 4's.
For the same idea but for an isosceles triangle see A275015; for a square array see A278290, for a square spiral see A278354; and for a hexagonal spiral see A047931.

Examples

			Triangle begins:
0;
1, 2;
2, 3, 2;
2, 4, 3, 2;
2, 4, 4, 3, 2;
2, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 4, 3, 2;
2, 4, 4, 4, 4, 4, 4, 4, 3, 2;
...
		

Crossrefs

Apart from the initial zero, row sums give A004767.
Column 1 is A130130.
Columns > 1 give the terms greater than 1 of A158411.
Right border gives 0 together with A007395, also twice A057427.
Second right border gives A122553.

A339259 Decimal expansion of the volume of the regular icosahedron inscribed in the unit sphere.

Original entry on oeis.org

2, 5, 3, 6, 1, 5, 0, 7, 1, 0, 1, 2, 0, 4, 0, 9, 5, 2, 5, 6, 4, 3, 8, 3, 8, 2, 2, 2, 3, 4, 5, 0, 1, 9, 0, 4, 9, 0, 8, 1, 8, 6, 3, 0, 2, 4, 3, 3, 5, 3, 3, 3, 9, 2, 6, 5, 2, 6, 1, 4, 8, 3, 8, 5, 1, 4, 7, 0, 7, 5, 1, 2, 0, 2, 2, 7, 1, 8, 2, 6, 7, 1, 2, 5, 0, 1, 1
Offset: 1

Views

Author

Hugo Pfoertner, Nov 29 2020

Keywords

Examples

			2.536150710120409525643838222345019049081863024335333926526148385147...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).

Programs

  • Mathematica
    RealDigits[4 * Sqrt[GoldenRatio + 2]/3, 10, 120][[1]] (* Amiram Eldar, Jun 02 2023 *)
  • PARI
    4/3*sqrt(2+(1+sqrt(5))/2)

Formula

Equals 4*sqrt(2 + phi)/3 where phi = A001622.
Equals A102208 / A019881 ^ 3. - Amiram Eldar, Jun 02 2023

A118273 Decimal expansion of (4/3)^(3/2).

Original entry on oeis.org

1, 5, 3, 9, 6, 0, 0, 7, 1, 7, 8, 3, 9, 0, 0, 2, 0, 3, 8, 6, 9, 1, 0, 6, 3, 4, 1, 4, 6, 7, 1, 8, 8, 6, 5, 4, 8, 3, 9, 3, 6, 0, 4, 6, 7, 0, 0, 5, 3, 6, 7, 1, 6, 6, 9, 3, 8, 2, 9, 3, 9, 5, 3, 7, 2, 9, 0, 6, 0, 7, 1, 2, 6, 1, 4, 1, 1, 5, 5, 5, 8, 8, 5, 1, 6, 5, 7, 4, 3, 8, 8, 2, 2, 8, 6, 6, 5, 4, 0, 0, 6, 0, 0, 5, 5
Offset: 1

Views

Author

Eric W. Weisstein, Apr 21 2006

Keywords

Comments

The volume of the cube inscribed in the unit-radius sphere. - Amiram Eldar, Jun 02 2023

Examples

			1.539600717839002038...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412.

Crossrefs

Cf. A122553 (octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).

Programs

Formula

Equals 8 * A020784.

A281181 E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^3 dx ).

Original entry on oeis.org

1, 1, 13, 493, 37369, 4732249, 901188997, 240798388357, 85948640603761, 39504564917358001, 22726779729476308093, 15998009117983994065693, 13526765851190230940840809, 13528070218935445806530640649, 15795819619923464298050697616117, 21294937666865806704402646632389557, 32828500597549179599563478551377297121, 57385924456400269824204023290894357442401, 112904615348383588847189789579363784912180973
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2017

Keywords

Comments

From Paul Curtz, Jan 20 2017: (Start)
a(n) mod 10 = periodic sequence of length 8: repeat [1, 1, 3, 3, 9, 9, 7, 7] = duplicated A001148(n).
a(n) mod 9 = 1, followed by period 3: repeat [1, 4, 7]. See A100402. See also A281280, A281182, A281183, A281184 (1, followed by 3's).
a(n+p) - a(n) is a multiple of 12. (End)

Examples

			E.g.f.: C(x) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 37369*x^8/8! + 4732249*x^10/10! + 901188997*x^12/12! + 240798388357*x^14/14! + 85948640603761*x^16/16! + 39504564917358001*x^18/18! + 22726779729476308093*x^20/20! +...
such that
(1) C(x) = cosh( Integral C(x)^3 dx ),
(2) C(x)^2 - S(x)^2 = 1, and
(3) C(x) = 1 + Integral C(x)^3*S(x) dx,
where S(x) begins:
S(x) = x + 4*x^3/3! + 88*x^5/5! + 4672*x^7/7! + 454144*x^9/9! + 70084096*x^11/11! + 15728822272*x^13/13! + 4836914249728*x^15/15! + 1952137912385536*x^17/17! + 1000749157519458304*x^19/19! + 635146072839001735168*x^21/21! +...+ A281180(n)*x^(2*n-1)/(2*n-1)! +...
RELATED SERIES.
As power series with reduced fractional coefficients, S(x) and C(x) begin:
S(x) = x + 2/3*x^3 + 11/15*x^5 + 292/315*x^7 + 3548/2835*x^9 + 273766/155925*x^11 + 15360178/6081075*x^13 + 214706776/58046625*x^15 +...
C(x) = 1 + 1/2*x^2 + 13/24*x^4 + 493/720*x^6 + 37369/40320*x^8 + 4732249/3628800*x^10 + 901188997/479001600*x^12 + 240798388357/87178291200*x^14 +...
Related powers of series C(x) are given as follows.
C(x)^2 = 1 + 2*x^2/2! + 32*x^4/4! + 1376*x^6/6! + 114176*x^8/8! + 15519488*x^10/10! + 3132551168*x^12/12! + 879422726144*x^14/14! + 327670676455424*x^16/16! + 156439068819587072*x^18/18! +...+ A281183(n)*x^(2*n)/(2*n)! +...
where C(x)^2 = 1 + S(x)^2.
C(x)^3 = 1 + 3*x^2/2! + 57*x^4/4! + 2739*x^6/6! + 246801*x^8/8! + 35822307*x^10/10! + 7636142793*x^12/12! + 2246286827091*x^14/14! + 871869519033249*x^16/16! + 431649452286233283*x^18/18! +...+ A281184(n)*x^(2*n)/(2*n)! +...
where C(x)^3 = d/dx log( C(x) + S(x) ).
Also, C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).
C(x)^4 = 1 + 4*x^2/2! + 88*x^4/4! + 4672*x^6/6! + 454144*x^8/8! + 70084096*x^10/10! + 15728822272*x^12/12! + 4836914249728*x^14/14! + 1952137912385536*x^16/16! + 1000749157519458304*x^18/18! +...+ A281180(n+1)*x^(2*n)/(2*n)! +...
where C(x)^4 = d/dx S(x).
		

Crossrefs

Cf. A281180 (S), A281182 (C+S), A281183 (C^2), A281184 (C^3), A001148, A100402, A122553.

Programs

  • Mathematica
    nMax = 30; m = maxExponent = 2*nMax; a[n_] := Module[{S = x, C = 1}, For[i = 1, i <= n, i++, S = Integrate[C^4 + x*O[x]^m // Normal, x] + O[x]^m // Normal; C = 1 + Integrate[S*C^3 + O[x]^m // Normal, x]] + O[x]^m // Normal; (2*n)!*Coefficient[C, x, 2*n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, nMax}] (* Jean-François Alcover, Jan 20 2017, adapted from PARI *)
    nmax = 20; Table[(CoefficientList[Sqrt[D[InverseSeries[Series[(2*x + Sin[2*x])/4, {x, 0, 2*nmax - 1}], x], x]], x] * Range[0, 2*nmax - 2]!)[[2*n - 1]], {n, 1, nmax}] (* Vaclav Kotesovec, Sep 02 2017 *)
  • PARI
    {a(n) = my(S=x,C=1); for(i=0,n, S = intformal( C^4 +x*O(x^(2*n))); C = 1 + intformal( S*C^3 ) ); (2*n)!*polcoeff(C,2*n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
E.g.f. C(x) = d/dx Series_Reversion( ( x*sqrt(1 - x^2) + asin(x) )/2 ).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral cos(x)^2 dx ) )^(1/2).
E.g.f. C(x) = ( d/dx Series_Reversion( (2*x + sin(2*x))/4 ) )^(1/2).
E.g.f. C(x) = ( d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ) )^(1/3).
E.g.f. C(x) = ( d/dx Series_Reversion( ( sinh(x)/cosh(x)^2 + atan(sinh(x)) )/2 ) )^(1/3).
E.g.f. C(x) and related series S(x) (e.g.f. of A281180) satisfy:
(1.a) C(x)^2 - S(x)^2 = 1.
(1.b) C(x)^2 + S(x)^2 = 1 + Integral 4*C(x)^4*S(x) dx.
Integrals.
(2.a) S(x) = Integral C(x)^4 dx.
(2.b) C(x) = 1 + Integral C(x)^3*S(x) dx.
Exponential.
(3.a) C(x) + S(x) = exp( Integral C(x)^3 dx ).
(3.b) C(x) = cosh( Integral C(x)^3 dx ).
(3.c) S(x) = sinh( Integral C(x)^3 dx ).
Derivatives.
(4.a) S'(x) = C(x)^4.
(4.b) C'(x) = C(x)^3*S(x).
(4.c) (C'(x) + S'(x))/(C(x) + S(x)) = C(x)^3.
(4.d) (C(x)^2 + S(x)^2)' = 4*C(x)^4*S(x).
Explicit Solutions.
(5.a) S(x) = Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.b) C(x) = d/dx Series_Reversion( Integral sqrt(1 - x^2) dx ).
(5.c) C(x) + S(x) = exp( Series_Reversion( Integral 1/cosh(x)^3 dx ) ).
(5.d) C(x)^2 = d/dx Series_Reversion( Integral cos(x)^2 dx ).
(5.e) C(x)^3 = d/dx Series_Reversion( Integral 1/cosh(x)^3 dx ).
(5.f) C(x)^4 = d/dx Series_Reversion( Integral 1/(1 + x^2)^2 dx ).
(5.g) C(x)^5 = d/dx Series_Reversion( Integral C(i*x)^5 dx ).

Extensions

Name simplified by Paul D. Hanna, Jan 22 2017

A122709 a(0)=1; thereafter a(n) = 9*n - 3.

Original entry on oeis.org

1, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

Philippe Deléham, Sep 23 2006

Keywords

Comments

Self-convolution of A122553.

Crossrefs

Cf. A017233 (9n+6), A008591, A122553.

Programs

  • GAP
    a:=[6,15];; for n in [3..60] do a[n]:=2*a[n-1]-a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 21 2018
  • Maple
    seq(coeff(series(((1+2*x)/(1-x))^2,x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Join[{1},LinearRecurrence[{2,-1},{6,15},60]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    a(n)=max(9*n-3,1) \\ Charles R Greathouse IV, Jan 17 2012
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^2 + O(x^100)) \\ Colin Barker, Jan 22 2018
    

Formula

a(0)=1, a(n) = 9*n - 3 = A008591(n) - 3 for n > 0.
a(n) = 2*a(n-1) - a(n-2) for n > 2; a(0)=1, a(1)=6, a(2)=15.
a(n) = a(n-1) + 9 for n > 1; a(0)=1, a(1)=6.
G.f.: ((1 + 2*x)/(1 - x))^2.
Equals binomial transform of [1, 5, 4, -4, 4, -4, 4, ...]. - Gary W. Adamson, Dec 10 2007
a(n) = A017233(n-1) for n > 0. - Georg Fischer, Oct 21 2018
E.g.f.: exp(x)*(9*x - 3) + 4. - Stefano Spezia, Mar 07 2023

Extensions

Edited by N. J. A. Sloane, Jan 23 2018

A223139 Decimal expansion of (sqrt(13) - 1)/2.

Original entry on oeis.org

1, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3, 6, 7, 5, 7
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2013

Keywords

Comments

Apart from a(1) the same as A209927 and A085550. [Joerg Arndt, Sep 17 2013]
Decimal expansion of sqrt(3 - sqrt(3 - sqrt(3 - sqrt(3 - ... )))).
Sequence with a(1) = 2 is decimal expansion of sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))) - A209927.
This is the positive root of x^2 + x - 3, and the negative one is -A209927. - Wolfdieter Lang, Aug 29 2022

Examples

			1.3027756377319946465...
		

Crossrefs

CF. A122553 (continued fraction).

Programs

  • Mathematica
    RealDigits[(Sqrt[13] - 1)/2, 10, 130]
  • PARI
    (sqrt(13)-1)/2 \\ Altug Alkan, Oct 02 2018

Formula

Closed form: (sqrt(13) - 1)/2 = A209927-1 = A098316-2.
sqrt(3 - sqrt(3 - sqrt(3 - sqrt(3 - ... )))) + 1 = sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))). See A209927.
Equals 2*(cos(2*Pi/13) + cos(6*Pi/13) + cos(8*Pi/13)) (see Sury link). - Michel Marcus, Aug 21 2015
Showing 1-10 of 26 results. Next