cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A122553 a(0)=1, a(n)=3 for n > 0.

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006

Keywords

Comments

Continued fraction for (sqrt(13) - 1)/2 = A223139.
Decimal expansion of 4/30. - Alonso del Arte, Aug 16 2012
4/3 is the volume of the regular octahedron inscribed in the unit-radius sphere. - Amiram Eldar, Jun 02 2023

References

  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, pp. 95-96, 224.

Crossrefs

Cf. A118273 (cube), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).
Cf. A223139.

Programs

Formula

a(n) = 3 - 2*0^n.
G.f.: (1 + 2*x)/(1 - x).
Sum_{n >= 0} a(n)*10^(-n) = 4/3.
From Amiram Eldar, Jun 05 2021: (Start)
4/3 = Product_{k>=1} (1 + 1/2^(2^k)).
4/3 = Sum_{k>=0} binomial(2*k,k)/((k+2)*4^k). (End)
Sum_{k>0} 3*k/4^k = 4/3 [Nicole Oresme]. - Stefano Spezia, Jun 27 2024
K_{n>=3} n/(n-2) = 4/3 (see Clawson at p. 224). - Stefano Spezia, Jul 01 2024
E.g.f.: 3*exp(x) - 2. - Elmo R. Oliveira, Aug 05 2024

A339259 Decimal expansion of the volume of the regular icosahedron inscribed in the unit sphere.

Original entry on oeis.org

2, 5, 3, 6, 1, 5, 0, 7, 1, 0, 1, 2, 0, 4, 0, 9, 5, 2, 5, 6, 4, 3, 8, 3, 8, 2, 2, 2, 3, 4, 5, 0, 1, 9, 0, 4, 9, 0, 8, 1, 8, 6, 3, 0, 2, 4, 3, 3, 5, 3, 3, 3, 9, 2, 6, 5, 2, 6, 1, 4, 8, 3, 8, 5, 1, 4, 7, 0, 7, 5, 1, 2, 0, 2, 2, 7, 1, 8, 2, 6, 7, 1, 2, 5, 0, 1, 1
Offset: 1

Views

Author

Hugo Pfoertner, Nov 29 2020

Keywords

Examples

			2.536150710120409525643838222345019049081863024335333926526148385147...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron).

Programs

  • Mathematica
    RealDigits[4 * Sqrt[GoldenRatio + 2]/3, 10, 120][[1]] (* Amiram Eldar, Jun 02 2023 *)
  • PARI
    4/3*sqrt(2+(1+sqrt(5))/2)

Formula

Equals 4*sqrt(2 + phi)/3 where phi = A001622.
Equals A102208 / A019881 ^ 3. - Amiram Eldar, Jun 02 2023

A327494 a(n) = numerator(r(n)) where r(n) = Sum_{j=0..n} j!/(2^j*floor(j/2)!)^2.

Original entry on oeis.org

1, 5, 11, 47, 191, 779, 1563, 6287, 50331, 201639, 403341, 1614057, 6456459, 25828839, 51658107, 206638863, 3306228243, 13225022367, 26450056889, 105800458501, 423201880193, 1692808490741, 3385617069661, 13542470306761, 108339763130127, 433359069421483
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Examples

			r(n) = 1, 5/4, 11/8, 47/32, 191/128, 779/512, 1563/1024, 6287/4096, 50331/32768, 201639/131072, ...
		

Crossrefs

Denominators are in A327493.

Programs

Formula

Lim_{n -> oo} r(n) = (4/3)^(3/2) = A118273.

A054759 Number of Eulerian orientations of the n X n square lattice (with wrap-around), i.e., number of arrow configurations on n X n grid that satisfy the square ice rule.

Original entry on oeis.org

4, 18, 148, 2970, 143224, 16448400, 4484823396, 2901094068042, 4448410550095612, 16178049740086515288, 139402641051212392498528, 2849295959501939989625992464, 137950545200232788276834783781648, 15844635835975276495290739119895808472
Offset: 1

Views

Author

Steven Finch, Apr 25 2000

Keywords

Comments

The n X n square lattice with wrap around is also called the torus grid graph. - Andrew Howroyd, Jan 11 2018

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 412-416.
  • Computed by Jennifer Henry in Dec. 1998.

Crossrefs

Cf. A118273, A358177. Main diagonal of A298119.

Formula

Elliot Lieb proved that lim_{n->oo} a(n)^(1/n^2) = (4/3)^(3/2). See A118273.

Extensions

a(14) from Brendan McKay, Apr 18 2024

A363437 Decimal expansion of the volume of the regular tetrahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

5, 1, 3, 2, 0, 0, 2, 3, 9, 2, 7, 9, 6, 6, 7, 3, 4, 6, 2, 3, 0, 3, 5, 4, 4, 7, 1, 5, 5, 7, 2, 9, 5, 5, 1, 6, 1, 3, 1, 2, 0, 1, 5, 5, 6, 6, 8, 4, 5, 5, 7, 2, 2, 3, 1, 2, 7, 6, 4, 6, 5, 1, 2, 4, 3, 0, 2, 0, 2, 3, 7, 5, 3, 8, 0, 3, 8, 5, 1, 9, 6, 1, 7, 2, 1, 9, 1, 4, 6, 2, 7, 4, 2, 8, 8, 8, 4, 6, 6, 8, 6, 6, 8, 5, 2
Offset: 0

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			0.51320023927966734623035447155729551613120155668455...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363438 (regular dodecahedron).
Other constants related to the regular tetrahedron: A020781, A020829, A137914, A156546, A187110, A210974, A232812, A236555.

Programs

Formula

Equals 8/(9*sqrt(3)).
Equals A118273 / 3.
Equals A020829 / A187110 ^ 3.

A363438 Decimal expansion of the volume of the regular dodecahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

2, 7, 8, 5, 1, 6, 3, 8, 6, 3, 1, 2, 2, 6, 2, 2, 9, 6, 7, 2, 9, 2, 5, 5, 4, 9, 1, 2, 7, 3, 5, 9, 4, 6, 9, 8, 7, 8, 9, 9, 3, 2, 1, 7, 7, 2, 0, 7, 6, 3, 3, 1, 9, 9, 2, 6, 3, 7, 0, 2, 4, 1, 4, 7, 4, 1, 6, 2, 5, 5, 1, 5, 0, 3, 2, 9, 1, 0, 6, 4, 9, 3, 0, 9, 4, 4, 4, 8, 5, 1, 3, 4, 7, 6, 6, 4, 8, 0, 8, 8, 0, 6, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			2.78516386312262296729255491273594698789932177207633...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron).
Cf. A001622.
Other constants related to the regular dodecahedron: A102769, A131595, A179296, A232810, A237603, A239798, A341906.

Programs

  • Mathematica
    RealDigits[(2*(5 + Sqrt[5]))/(3*Sqrt[3]), 10, 120][[1]]
  • PARI
    2*sqrt(5+sqrt(5))/sqrt(27) \\ Charles R Greathouse IV, Feb 07 2025

Formula

Equals 2*sqrt(5+sqrt(5))/(3*sqrt(3)).
Equals 4*(phi+2)/(3*sqrt(3)), where phi is the golden ratio (A001622).
Equals A102769 / A179296 ^ 3.

A256888 Terms of the continued fraction expansion of 1 + sqrt(64 / 37).

Original entry on oeis.org

2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3, 2, 3, 5, 1, 3, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Keywords

Comments

The number sqrt(64/37) is of interest because "Lieb's square ice constant" is sqrt(64/27) and 27+37 = 64 and 27*37 = 999. Adding 1 to sqrt(64/37) creates a continued fraction with a cycle length of 10.

Crossrefs

Cf. A118273.

Programs

  • Mathematica
    ContinuedFraction[1 + Sqrt[64/37], 120] (* Michael De Vlieger, Apr 24 2015 *)
Showing 1-7 of 7 results.