cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038764 a(n) = (9*n^2 + 3*n + 2)/2.

Original entry on oeis.org

1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Coefficients of x^2 of certain rook polynomials (for n>=1; see p. 18 of the Riordan paper). - Emeric Deutsch, Mar 08 2004
a(n) is also the least weight of self-conjugate partitions having n+1 different parts such that each part is congruent to 1 modulo 3. The first such self-conjugate partitions, corresponding to a(n) = 0, 1, 2, 3, are 1, 4+3, 7+4+4+4+3, 10+7+7+7+4+4+4+3. - Augustine O. Munagi, Dec 18 2008

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.

Crossrefs

Reflection of A060544 in A081272.
Second column of A024462. Also = A064641(n+1, 2).
Shallow diagonal of triangular spiral in A051682.
Partial sums of A122709.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
  • PARI
    a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
    
  • PARI
    Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
  • Sage
    a = lambda n: hypergeometric([-n, -2], [1], 3)
    print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
    

Formula

a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023

Extensions

More terms from James Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018

A179805 a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.

Original entry on oeis.org

1, 3, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402
Offset: 0

Views

Author

Gary W. Adamson, Jul 27 2010

Keywords

Comments

Apart from the second term, the same as A122709. - R. J. Mathar, Jul 30 2010
For n > 1, a(n) is the maximum value of the sum of the vertices in a normal magic triangle of order n (see formula 10 in Trotter). - Stefano Spezia, Mar 03 2021

Examples

			a(4) = 24 = 9 + a(3) = 9 + 15.
a(4) = 24 = 2*a(3) - a(2) = 2*15 - 6.
		

Crossrefs

Cf. A122709.

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{1,3,6,15},50] (* Harvey P. Dale, Sep 25 2018 *)

Formula

(1 + 3*x + 6*x^2 + 15*x^3 + ...) = (1 + 3*x^2 + 3*x^3 + 3*x^4 + ...) * (1 + 3*x + 3*x^2 + 3*x^3 + 3*x^4 + ...).
a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.
a(n) = a(n-1) + 9 for n > 2.
For n > 1, a(n) == 6 (mod 9).
From Colin Barker, Oct 28 2012: (Start)
a(n) = 9*n - 12 for n > 1.
G.f.: (2*x+1)*(3*x^2-x+1)/(x-1)^2. (End)
E.g.f.: 13 + 6*x + 3*exp(x)*(3x - 4). - Stefano Spezia, Mar 03 2021

A122016 Riordan array(1, x*(1+2*x)/(1-x)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 3, 15, 9, 1, 0, 3, 24, 36, 12, 1, 0, 3, 33, 90, 66, 15, 1, 0, 3, 42, 171, 228, 105, 18, 1, 0, 3, 51, 279, 579, 465, 153, 21, 1, 0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1, 0, 3, 69, 576, 2172, 3858, 3258, 1344, 276, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 24 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,3,-2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Rising and falling diagonals are A078010 and A122552.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 3,  1;
  0, 3,  6,   1;
  0, 3, 15,   9,    1;
  0, 3, 24,  36,   12,    1;
  0, 3, 33,  90,   66,   15,   1;
  0, 3, 42, 171,  228,  105,  18,   1;
  0, 3, 51, 279,  579,  465, 153,  21,  1;
  0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-x)/(1-(y+1)*x-2*y*x^2),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Dec 27 2023 *)

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A026150(n), A102900(n) for x = 1, 2.
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1). - Philippe Deléham, Sep 25 2006
G.f.: (1-x)/(1-(y+1)*x-2*y*x^2). - Philippe Deléham, Jan 31 2012
Sum_{k=0..n} T(n,k)*x^k = A117575(n+1), A000007(n), A026150(n), A122117(n), A147518(n) for x = -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 31 2012

Extensions

More terms from Stefano Spezia, Dec 27 2023

A179000 Array T(n,k) read by antidiagonals: coefficient [x^k] of (1 + n*Sum_{i>=1} x^i)^2, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 8, 4, 1, 8, 15, 12, 5, 1, 10, 24, 24, 16, 6, 1, 12, 35, 40, 33, 20, 7, 1, 14, 48, 60, 56, 42, 24, 8, 1, 16, 63, 84, 85, 72, 51, 28, 9, 1, 18, 80, 112, 120, 110, 88, 60, 32, 10
Offset: 1

Views

Author

Gary W. Adamson, Jan 03 2011

Keywords

Comments

Antidiagonal sums are in A136396.

Examples

			First few rows of the array:
  1   2   3   4   5   6   7   8   9  10  11  A000027
  1   4   8  12  16  20  24  28  32  36  40  A008574
  1   6  15  24  33  42  51  60  69  78  87  A122709
  1   8  24  40  56  72  88 104 120 136 152  A051062
  1  10  35  60  85 110 135 160 185 210 235
  1  12  48  84 120 156 192 228 264 300 336
  1  14  63 112 161 210 259 308 357 406 455
  1  16  80 144 208 272 336 400 464 528 592
  1  18  99 180 261 342 423 504 585 666 747
Row n=3 is generated by (1 + 3x + 3x^2 + 3x^3 + 3x^4 + ...)^2 = 1 + 6x + 15x^2 + 24x^3 + ..., for example.
		

Crossrefs

Programs

  • Maple
    A179000 := proc(n,k) if k = 0 then 1; else 2*n+n^2*(k-1) ; end if; end proc: # R. J. Mathar, Jan 05 2011

Formula

T(n,0) = 1; T(n,k) = n*(2+n*(k-1)), k > 0. - R. J. Mathar, Jan 05 2011
Showing 1-4 of 4 results.