cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A137914 Decimal expansion of arccos(1/3).

Original entry on oeis.org

1, 2, 3, 0, 9, 5, 9, 4, 1, 7, 3, 4, 0, 7, 7, 4, 6, 8, 2, 1, 3, 4, 9, 2, 9, 1, 7, 8, 2, 4, 7, 9, 8, 7, 3, 7, 5, 7, 1, 0, 3, 4, 0, 0, 0, 9, 3, 5, 5, 0, 9, 4, 8, 3, 9, 0, 5, 5, 5, 4, 8, 3, 3, 3, 6, 6, 3, 9, 9, 2, 3, 1, 4, 4, 7, 8, 2, 5, 6, 0, 8, 7, 8, 5, 3, 2, 5, 1, 6, 2, 0, 1, 7, 0, 8, 6, 0, 9, 2, 1, 1, 3, 8, 9, 4
Offset: 1

Views

Author

Rick L. Shepherd, Feb 22 2008

Keywords

Comments

Dihedral angle in radians of regular tetrahedron.
Arccos(1/3) is the central angle of a cube, made by the center and two neighboring vertices. - Clark Kimberling, Feb 10 2009
Also the complementary tetrahedral angle, Pi-A156546, and therefore related to the magic angle (Pi-2*A195696). - Stanislav Sykora, Jan 23 2014
Polar angle (or apex angle) of the cone that subtends exactly one third of the full solid angle. - Stanislav Sykora, Feb 20 2014
Also the acute angle in the rhombi and isosceles trapezoids in the trapezo-rhombic dodecahedron. - Eric W. Weisstein, Jan 09 2019
Also the angle between the tangent lines to the curves y = sin(x) at y = cos(x) at the points of intersection. - David Radcliffe, Jan 17 2023

Examples

			1.2309594173407746821349291782479873757103400093550948390555483336639923144...
		

Crossrefs

Cf. A137915 (same in degrees), A019670, A195695, A195696, A238238, Platonic solids dihedral angles: A156546 (octahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arccos(1/3); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[ArcCos[1/3], 10, 120][[1]] (* Harvey P. Dale, Jul 06 2018 *)
    RealDigits[ArcSec[3], 10, 120][[1]] (* Eric W. Weisstein, Jan 09 2019 *)
  • PARI
    acos(1/3)
    

Formula

arccos(1/3) = arctan(2*sqrt(2)) = 2*arcsin(sqrt(3)/3) = arcsin(2*sqrt(2)/3).
Equals sqrt(2)*Sum_{k>=0} (-1)^k/(2^k*(2*k+1)). - Davide Rotondo, Jun 07 2025
Equals 2*A195695. - Hugo Pfoertner, Jun 07 2025

A156546 Decimal expansion of the central angle of a regular tetrahedron.

Original entry on oeis.org

1, 9, 1, 0, 6, 3, 3, 2, 3, 6, 2, 4, 9, 0, 1, 8, 5, 5, 6, 3, 2, 7, 7, 1, 4, 2, 0, 5, 0, 3, 1, 5, 1, 5, 5, 0, 8, 4, 8, 6, 8, 2, 9, 3, 9, 0, 0, 2, 0, 0, 1, 0, 9, 8, 1, 9, 1, 9, 3, 9, 6, 2, 5, 8, 6, 4, 3, 8, 2, 4, 0, 9, 1, 8, 0, 7, 9, 5, 2, 9, 1, 0, 7, 7, 4, 7, 8, 3, 2, 0, 5, 1, 7, 1, 2, 5, 6, 1, 4, 6, 8, 4, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If O is the center of a regular tetrahedron ABCD, then the central angle AOB is this number; exact value is Pi - arccos(1/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- cube: A137914,
- octahedron: A019669,
- dodecahedron: A156547,
- icosahedron: A105199.
Dihedral angle of two adjacent faces of the octahedron. - R. J. Mathar, Mar 24 2012
Best known as "tetrahedral angle" theta (e.g., in chemistry). Its Pi complement (i.e., Pi - theta) is the dihedral angle between adjacent faces in regular tetrahedron. - Stanislav Sykora, May 31 2012
Also twice the magic angle (A195696). - Stanislav Sykora, Nov 14 2013

Examples

			Pi - arccos(1/3) = 1.910633236249018556..., or, in degrees, 109.471220634490691369245999339962435963006843100... = A247412
		

Crossrefs

Cf. Platonic solids dihedral angles: A137914 (tetrahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Start with vertices (1,1,1), (1,-1,-1,), (-1,1,-1), and (1,-1,1) and apply the formula for cosine of the angle between two vectors.
Equals 2* A195696. - R. J. Mathar, Mar 24 2012
Equals A000796 - A137914 = A247412 / A072097 - R. J. Mathar, Feb 18 2025

A137218 Decimal expansion of the argument of -1 + 2*i.

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 3, 9, 3, 5, 7, 9, 5, 7, 0, 2, 7, 3, 5, 4, 4, 5, 5, 7, 7, 9, 2, 3, 1, 0, 0, 9, 6, 5, 8, 4, 4, 1, 2, 7, 1, 2, 1, 7, 5, 3, 9, 7, 3, 6, 7, 3, 1, 7, 4, 2, 9, 8, 4, 0, 5, 3, 8, 4, 8, 7, 4, 1, 0, 6, 0, 6, 7, 3, 0, 8, 8, 4, 6, 2, 0, 4, 6, 1, 4, 6, 1, 7, 6, 9, 6, 6, 5, 5, 9, 4, 6, 4, 2, 6, 5, 4, 7, 6, 0
Offset: 1

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Mar 06 2008

Keywords

Comments

Gives closed forms for many arctangent values:
arctan(2) = Pi - a, arctan(1/2) = a - Pi/2,
arctan(3) = a - Pi/4, arctan(1/3) = 3*Pi/4 - a,
arctan(7) = 7*Pi/4 - 2*a, arctan(1/7) = 2*a - 5*Pi/4,
arctan(4/3) = 2*a - Pi and arctan(3/4) = 3*Pi/2 - 2*a.
Dihedral angle in the dodecahedron (radians). - R. J. Mathar, Mar 24 2012
Larger interior angle (in radians) of a golden rhombus; A105199 is the smaller interior angle. - Eric W. Weisstein, Dec 17 2018

Examples

			2.0344439357957027354455779231...
		

Crossrefs

Platonic solids' dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A236367 (icosahedron). - Stanislav Sykora, Jan 23 2014
Cf. A242723 (same in degrees).
Cf. A105199 (smaller interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[Pi - ArcTan[2], 10, 120][[1]] (* Harvey P. Dale, Aug 08 2014 *)
  • PARI
    default(realprecision, 120);
    acos(-1/sqrt(5)) \\ or
    arg(-1+2*I) \\ Rick L. Shepherd, Jan 26 2014

Formula

Equals Pi - arctan(2) = A000796 - A105199 = 2*A195723.

Extensions

Corrected a typo in the sequence Matt Rieckman (mjr162006(AT)yahoo.com), Feb 05 2010
More terms from Rick L. Shepherd, Jan 26 2014

A379136 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentakis dodecahedron.

Original entry on oeis.org

2, 7, 3, 5, 2, 5, 4, 7, 6, 1, 4, 9, 0, 3, 3, 4, 6, 6, 1, 9, 8, 9, 8, 5, 6, 0, 1, 8, 3, 9, 3, 4, 9, 5, 7, 9, 2, 7, 1, 6, 9, 6, 9, 3, 3, 9, 6, 5, 5, 6, 8, 5, 7, 4, 2, 9, 3, 0, 4, 0, 0, 5, 9, 0, 1, 3, 0, 2, 9, 3, 0, 5, 7, 6, 0, 6, 9, 2, 0, 0, 0, 3, 1, 1, 4, 6, 4, 5, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 17 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			2.7352547614903346619898560183934957927169693...
		

Crossrefs

Cf. A379132 (surface area), A379133 (volume), A379134 (inradius), A379135 (midradius).
Cf. A236367 and A344075 (dihedral angles of a truncated icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(80 + 9*Sqrt[5])/109], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["PentakisDodecahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(80 + 9*sqrt(5))/109) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals arccos(-(80 + 9*sqrt(5))/109) = arccos(-(80 + 9*A002163)/109).

A387147 Decimal expansion of the dihedral angle, in radians, between triangular and square faces in an elongated pentagonal pyramid (Johnson solid J_9).

Original entry on oeis.org

2, 2, 2, 3, 1, 5, 4, 4, 6, 6, 5, 7, 9, 2, 6, 4, 8, 0, 5, 2, 2, 6, 7, 1, 2, 3, 2, 3, 2, 8, 3, 5, 7, 4, 0, 1, 6, 4, 6, 3, 8, 9, 2, 6, 1, 9, 6, 5, 0, 5, 3, 2, 6, 5, 2, 2, 8, 2, 2, 0, 0, 2, 4, 2, 8, 6, 0, 0, 5, 1, 7, 8, 6, 9, 6, 4, 1, 4, 4, 0, 3, 2, 2, 2, 3, 5, 8, 4, 5, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 18 2025

Keywords

Comments

Also one of the dihedral angles, in radians, in an elongated pentagonal bipyramid, elongated pentagonal cupola, elongated pentagonal orthobicupola, elongated pentagonal gyrobicupola, elongated pentagonal orthocupolarotunda and elongated pentagonal gyrocupolarotunda (Johnson solids J_16, J_20, J_38, J_39, J_40 and J_41, respectively).

Examples

			2.2231544665792648052267123232835740164638926196505...
		

Crossrefs

Cf. A384138 (J_9 volume).
Cf. other J_9 dihedral angles: A019669, A228719, A236367.
Cf. A010476.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(10 - Sqrt[20])/15]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J9", "DihedralAngles"]], 2], 10, 100]]
  • PARI
    acos(-sqrt((10 - sqrt(20))/15)) \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals arccos(-sqrt((10 - 2*sqrt[5])/15)) = arccos(-sqrt((10 - A010476)/15)).

A387189 Decimal expansion of the smallest dihedral angle, in radians, in a pentagonal bipyramid (Johnson solid J_13).

Original entry on oeis.org

1, 3, 0, 4, 7, 1, 6, 2, 7, 9, 5, 6, 8, 7, 3, 6, 3, 7, 1, 9, 9, 0, 7, 8, 1, 2, 6, 3, 2, 8, 7, 6, 4, 5, 1, 4, 8, 7, 3, 0, 6, 1, 5, 8, 3, 9, 9, 2, 5, 9, 5, 9, 4, 8, 3, 5, 8, 9, 4, 5, 5, 8, 9, 3, 4, 1, 2, 2, 8, 7, 1, 6, 7, 6, 4, 2, 0, 7, 9, 0, 6, 5, 8, 1, 9, 1, 3, 4, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 21 2025

Keywords

Comments

This is the dihedral angle between triangular faces at the edge where the two pyramidal parts of the solid meet.
Also the dihedral angle between triangular faces in a pentagonal orthobicupola (Johnson solid J_30).

Examples

			1.3047162795687363719907812632876451487306158399...
		

Crossrefs

Cf. A236367 (J_13 smallest dihedral angle).
Cf. other J_30 dihedral angles: A105199, A377995, A377996.
Cf. A179641 (J_13 volume), A120011 (J_13 surface area, divided by 10).
Cf. A384624 (J_30 volume), A384625 (J_30 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[80] - 5)/15], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J13", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((4*sqrt(5) - 5)/15) = arccos((A010532 - 5)/15).
Equals 2*A386852.
Showing 1-6 of 6 results.