cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A014480 Expansion of g.f. (1+2*x)/(1-2*x)^2.

Original entry on oeis.org

1, 6, 20, 56, 144, 352, 832, 1920, 4352, 9728, 21504, 47104, 102400, 221184, 475136, 1015808, 2162688, 4587520, 9699328, 20447232, 42991616, 90177536, 188743680, 394264576, 822083584, 1711276032, 3556769792, 7381975040, 15300820992, 31675383808, 65498251264
Offset: 0

Views

Author

Keywords

Comments

Number of binary trees of size n and height n-1, computed from size n=3 onward; i.e. A014480(n) = A073345(n+3,n+2). (For sizes n=0 through 2 there are no such trees.)
Also determinant of the n X n matrix M(i,j)=binomial(2i+2j,i+j). - Benoit Cloitre, Mar 27 2004
Subdiagonal in triangle displayed in A128196. - Peter Luschny, Feb 26 2007
From Jaume Oliver Lafont, Nov 08 2009: (Start)
From two BBP-type formulas by Knuth, (page 6 of the reference)
Sum_{n>=0} 1/a(n) = 2^(1/2)*log(1+2^(1/2))
Sum_{n>=0} (-1)^n/a(n) = 2^(1/2)*atan(1/2^(1/2))
(End)
Create a triangle with first column T(n,1)=1+4*n for n=0 1 2... The remaining terms T(r,c)=T(r,c-1)+T(r-1,c-1). T(n,n+1)=a(n). - J. M. Bergot, Dec 18 2012

Examples

			(1 + 2*x)/(1-2*x)^2 = 1 + 6*x + 20*x^2 + 56*x^3 + 144*x^4 + 352*x^5 + 832*x^6 + ...
		

Crossrefs

Leftmost column of A167580 (shifted).

Programs

  • Haskell
    a014480 n = a014480_list !! n
    a014480_list = 1 : 6 : map (* 4)
       (zipWith (-) (tail a014480_list) a014480_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [2^n*(2*n + 1): n in [0..35]]; // Vincenzo Librandi, Oct 20 2014
  • Maple
    a:=n-> sum(2^n*n^binomial(j,n)/2,j=1..n): seq(a(n),n=1..29); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    CoefficientList[ Series[(1 + 2*x)/(1 - 2*x)^2, {x, 0, 28}], x]
    LinearRecurrence[{4, -4}, {1, 6}, 29] (* Robert G. Wilson v, Dec 26 2012 *)
    Table[2^n (2*n + 1), {n, 0, 28}] (* Fred Daniel Kline, Oct 20 2014 *)
  • PARI
    Vec((1+2*x)/(1-2*x)^2+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = (2n+1)*2^n = 4a(n-1)-4a(n-2) = 4*A052951(n-1) = a(n-1)+A052951(n) = a(n-1)*(2+4/(2n-1)) = A054582(n, n). - Henry Bottomley, May 16 2001
E.g.f.: x*cosh(sqrt(2)*x) = x + 6x^3/3! + 20x^5/5! + 56x^7/7! +... - Ralf Stephan, Mar 03 2005
From Reinhard Zumkeller, Apr 27 2006: (Start)
a(n) = A118416(n+1,n+1) = A118413(n+1,n+1);
A001511(a(n)) = A003602(a(n));
A117303(a(n)) = a(n). (End)
Row sums of triangle A132775 - Gary W. Adamson, Aug 29 2007
Row sums of triangle A134233 - Gary W. Adamson, Oct 14 2007
From Johannes W. Meijer, Nov 23 2009: (Start)
a(n) = 3*a(n-1) - 2^(n-1)*(2*n-5) with a(0) = 1.
a(n) = 3*a(n-1) - 2*a(n-2) + 2^n with a(0) = 1 and a(1) = 6.
(End)
G.f.: -G(0) where G(k) = 1 - (2*k+2)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
E.g.f.: Q(0), where Q(k)= 1 + 4*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013

A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.

Original entry on oeis.org

1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums give A014477: Sum_{k=1..n} T(n,k) = A014477(n-1);
central terms give A118415; T(2*k-1,k) = A058962(k-1);
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
T(n,n) = A014480(n-1) = A118413(n,n);
A001511(T(n,k)) = A002024(n,k);
A003602(T(n,k)) = A002260(n,k).
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024

Examples

			Triangle begins:
   1;
   2,   6;
   4,  12,  20;
   8,  24,  40,  56;
  16,  48,  80, 112, 144;
  32,  96, 160, 224, 288, 352;
  64, 192, 320, 448, 576, 704, 832;
		

Crossrefs

Programs

  • Haskell
    a118416 n k = a118416_tabl !! (n-1) !! (k-1)
    a118416_row 1 = [1]
    a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
    a118416_tabl = map a118416_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Maple
    A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
  • Mathematica
    Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
  • Python
    from math import isqrt
    def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025

Formula

T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).

A196525 Decimal expansion of log(1+sqrt(2))/sqrt(2).

Original entry on oeis.org

6, 2, 3, 2, 2, 5, 2, 4, 0, 1, 4, 0, 2, 3, 0, 5, 1, 3, 3, 9, 4, 0, 2, 0, 0, 8, 0, 2, 5, 0, 5, 6, 8, 0, 0, 2, 6, 5, 0, 6, 9, 5, 3, 1, 2, 3, 4, 6, 5, 6, 7, 2, 5, 2, 8, 9, 8, 7, 1, 4, 7, 7, 6, 0, 9, 6, 1, 7, 0, 0, 0, 4, 5, 4, 7, 0, 1, 4, 1, 8, 0, 4, 6, 7, 6, 6, 9, 0, 7, 3, 2, 3, 5, 6, 2, 6, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.6232252401402305133940200802505680... = A091648/A002193.
From _Peter Bala_, Dec 01 2021: (Start)
With N = 10000, the truncated series Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k+3)) = 0.6232252[3]014023[16]1339[3659]080... to 27 decimal places. The square bracketed numbers show where this decimal expansion differs from that of (1/sqrt(2))*log(1+sqrt(2)) = 0.6232252(4)014023(05) 1339(4020)080.... The numbers 1, -11, 361 must be added to the square bracketed numbers to give the correct decimal expansion to 27 decimal places. (End)
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(Sqrt(2)+1)/Sqrt(2); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[Log[1+Sqrt[2]]/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Dec 27 2011 *)
    RealDigits[Sum[1/((2 n - 1) 2^n), {n, 1, Infinity}], 10, 120][[1]] (* Fred Daniel Kline, May 23 2019 *)
  • PARI
    log(sqrt(2)+1)/sqrt(2) \\ Michel Marcus, Sep 27 2017
    

Formula

Equals Sum_{n>=1} A091337(n)/n = 1 - 1/3 - 1/5 + 1/7 + 1/9 - 1/11 - ...
Equals 2*Sum_{n>=1} (-1)^n/A001539(n). - Michel Marcus, Sep 27 2017
From Fred Daniel Kline, May 23 2019: (Start)
Equals arcsinh(1)/sqrt(2).
Equals Sum_{n>=1} 1/A118417(n-1) = Sum_{n>=1} 1/((2*n - 1)*2^n). (End)
From Peter Bala, Nov 01 2019: (Start)
Equals (1/sqrt(2))*arccoth(sqrt(2)).
Equals 1 - 8*Sum_{n >= 0} (-1)^(n+1)*n/(16*n^2 - 1).
Equals 1 - Integral_{x = 0..inf} exp(-2*x)*cosh(x)/cosh(2*x) dx.
Equals 2*Integral_{x = 0..inf} exp(x)*(exp(2*x) + 1)*(exp(4*x) - 1)/(exp(4*x) + 1)^2 dx - 1. (End)
From Amiram Eldar, Aug 16 2020: (Start)
Equals Sum_{k>=0} (-1)^k * (2*k)!!/(2*k+1)!!.
Equals Integral_{x=0..Pi/4} 1/(cos(x) + sin(x)) dx. (End)
From Peter Bala, Dec 01 2021: (Start)
Equals 2*Sum_{k >= 0} (-1)^k/((4*k + 1)*(4*k + 3)).
Let N be a positive integer divisible by 4. We have the asymptotic expansion (1/sqrt(2))*log(1 + sqrt(2)) - 2*Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k + 3)) ~ 1/N^2 - 11/N^4 + 361/N^6 - 24611/N^8 + ..., where the sequence of unsigned coefficients [1, 11, 361, 24611, ...] is A000464. See A181048 and A181049. An example is given below. (End)
Equals 1/Product_{p prime} (1 - Kronecker(8,p)/p), where Kronecker(8,p) = 0 if p = 2, 1 if p == 1 or 7 (mod 8) or -1 if p == 3 or 5 (mod 8). - Amiram Eldar, Dec 17 2023
Equals integral_{x=0..Pi/2} sin^2(x)/(sin(x)+cos(x)) dx [Nahin]. - R. J. Mathar, May 16 2024

A143126 a(n) = (1-2n)*2^n.

Original entry on oeis.org

1, -2, -12, -40, -112, -288, -704, -1664, -3840, -8704, -19456, -43008, -94208, -204800, -442368, -950272, -2031616, -4325376, -9175040, -19398656, -40894464, -85983232, -180355072, -377487360, -788529152, -1644167168, -3422552064, -7113539584, -14763950080
Offset: 0

Views

Author

Paul Barry, Jul 26 2008

Keywords

Comments

Hankel transform of abs(A002420) (which is 2*0^n - binomial(2n,n)/(2n-1)).

Crossrefs

Programs

  • Mathematica
    a[n_] := (1-2n)*2^n; Array[a, 40, 0] (* Amiram Eldar, Oct 01 2022 *)

Formula

G.f.: (1-6x)/(1-2x)^2;
a(n) = Sum_{k=0..n} A121314(n,k)*(-1)^k*2^(3n-2k). - Philippe Deléham, Oct 31 2008
From Amiram Eldar, Oct 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 - arcsinh(1)/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = 1 + arctan(1/sqrt(2))/sqrt(2). (End)
Showing 1-4 of 4 results.