A195738 Triangle read by rows: DR(n,d) is the number of properly d-dimensional polyominoes with n cells, modulo translations and rotations (n >= 1, 0 <= d <= n-1).
1, 0, 1, 0, 1, 1, 0, 1, 6, 3, 0, 1, 17, 17, 4, 0, 1, 59, 131, 52, 7, 0, 1, 195, 915, 709, 153, 13, 0, 1, 703, 6553, 8946, 3350, 454, 28
Offset: 1
Examples
Triangle begins: n\d| 0 1 2 3 4 5 6 7 ---+---------------------------------=--- 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 1 6 3 5 | 0 1 17 17 4 6 | 0 1 59 131 52 7 7 | 0 1 195 915 709 153 13 8 | 0 1 703 6553 8946 3350 454 28 ...
Links
- W. F. Lunnon, Counting multidimensional polyominoes, Computer Journal 18 (4) (1975) 366-367.
Crossrefs
Formula
From Robert A. Russell, May 03 2020: (Start)
We can add unoriented and chiral pairs for the top two diagonals. The summands have quick algorithms. (End)
Extensions
Sequence corrected by Petros Hadjicostas, Jan 11 2019 after observation by Jon E. Schoenfield
Comments