cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253172 Numbers n = p * q, where n, p, and q together contain all 10 digits at least once.

Original entry on oeis.org

15628, 15678, 16038, 17082, 17820, 19084, 20457, 20748, 20754, 21658, 24507, 24587, 25704, 26910, 26970, 27096, 27504, 27690, 28156, 28651, 29076, 29370, 29670, 29706, 29730, 30956, 30972, 30976, 32890, 32970, 34056, 34902, 34986, 35046, 35074, 35096, 35496, 35690, 36092, 36490, 36508, 36950, 36970, 36972, 37092, 37096, 37290, 37590, 37690, 37908, 38870, 39026, 39720, 39760, 40587, 40596
Offset: 1

Views

Author

Randy L. Ekl, Dec 28 2014

Keywords

Comments

All pandigital numbers (cf. A171102) belong to this sequence; therefore A050288(1) = 10123457689 is the smallest prime term. - Reinhard Zumkeller, Dec 29 2014

Examples

			a(1) is 15628 = 4 * 3907, using all 10 digits.
a(8) is 20748 = 13 * 1596 (note duplicate 1, which is ok in this sequence).
a(3) is 16038 = 27 * 594, and also 16038 = 54 * 297; two different solutions for a(3).
		

Crossrefs

Cf. A195814, which restricts sequence terms along with their factors to exactly 10 digits, and thus has a finite number of terms.
Cf. A027750, subsequences: A050278, A171102, A050288.

Programs

  • Haskell
    import Data.List (nub, sort)
    a253172 n = a253172_list !! (n-1)
    a253172_list = filter f [2..] where
       f x = g divs $ reverse divs where
             g (d:ds) (q:qs) = d <= q &&
               (sort (nub $ xs ++ show d ++ show q) == decs || g ds qs)
             xs = show x
             divs = a027750_row x
       decs = "0123456789"
    -- Reinhard Zumkeller, Dec 29 2014
  • PARI
    isokpq(n) = {fordiv(n, d, digs = digits(n); if ( d <= sqrtint(n), digs = concat(digs, digits(d)); digs = concat(digs, digits(n/d)); if (#Set(digs) == 10, return(1));););}
    lista(nn) = {for(n=2, nn, if (isokpq(n), print1(n, ", ")););} \\ Michel Marcus, Dec 29 2014
    

A273260 List of base-ten k-balanced factorization integers: The combined digits of an integer and its factorization primes and exponents contain exactly k copies of each of the ten digits, for some k.

Original entry on oeis.org

26487, 28651, 61054, 65821, 45849660, 84568740, 104086845, 106978404, 107569740, 107804658, 108489045, 118678440, 130445658, 130567806, 135807860, 137678445, 140679804, 140884695, 143450660, 143976180, 146859800, 148478520, 149528648, 150468056, 150568824
Offset: 1

Views

Author

Hans Havermann, Aug 28 2016

Keywords

Comments

The b-file includes the smallest 74 k=3 integers but is still missing the largest 3 k=2 integers, which are 3392164558027, 8789650571264, and 9418623046875. - Hans Havermann, Jan 20 2017

Examples

			There are exactly four terms with k=1, namely the first four terms on the list: 26487 = 3^5*109, 28651 = 7*4093, 61054 = 2*7^3*89, and 65821 = 7*9403. In each of these, the digits of the number and the digits on the right-hand side of the equals sign together consist exactly of the digits 0 through 9.
8789650571264 is in the sequence because its digits combined with the digits of 2^31*4093 contain exactly two of every base ten digit.
		

Crossrefs

A253173 Values n, where n = p * q, and n, p, and q together contain all 10 digits at least once, and no digit is in more than one of n, p or q.

Original entry on oeis.org

15628, 15678, 16038, 17082, 17820, 19084, 20457, 20754, 21658, 24507, 26910, 27504, 28156, 28651, 30976, 32890, 34902, 35046, 35496, 36508, 36970, 37096, 37690, 38870, 40596, 40898, 43076, 43670, 45068, 46740, 46970, 47690, 48504, 48592, 50076, 50346
Offset: 1

Views

Author

Randy L. Ekl, Dec 28 2014

Keywords

Examples

			a(1) is 15628 = 4 * 3907, using all 10 digits.
20748 = 13 * 1596, using all 10 digits, but is NOT a member of this sequence, because the digit 1 appears in both p and q.
		

Crossrefs

Cf. A195814 (a finite subsequence).
Cf. A253172 (a supersequence, which allows for duplicate digits in n, p and q).

Programs

  • PARI
    isok(n) = {fordiv(n, d, q = n/d; sn = vecsort(digits(n),,8); sd = vecsort(digits(d),,8); sq = vecsort(digits(q),,8); sa = vecsort(concat(sn, concat(sd, sq)),,8); if ((#sa == 10) && (#sn + #sd + #sq == 10), return (1));); return (0);} \\ Michel Marcus, Feb 07 2015
Showing 1-3 of 3 results.