cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195865 G.f. satisfies A(x) = exp( Sum_{n>=1} (A(x^n) + A(-x^n))/2 * x^n/n ).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 10, 12, 25, 33, 68, 91, 190, 264, 555, 780, 1649, 2365, 5021, 7274, 15518, 22727, 48646, 71784, 154162, 229094, 493346, 737215, 1591518, 2390072, 5170896, 7798020, 16903848, 25587218, 55561618, 84377881, 183509750, 279499063, 608726985, 929556155, 2027094432
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2011

Keywords

Comments

For n>=1, a(n) is the number of rooted trees (see A000081) with n non-root nodes where non-root nodes cannot have odd out-degrees, see the note by David Callan and the example. - Joerg Arndt, Jun 28 2014

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 +...
Let B(x) = (A(x) + A(-x))/2 then
log(A(x)) = B(x) + B(x^2)*x^2/2 + B(x^3)*x^3/3 + B(x^4)*x^4/4 +...
The coefficients in (A(x) + A(-x))/2 begin:
[1,0,1,0,2,0,5,0,12,0,33,0,91,0,264,0,780,0,2365,0,7274,...]
from which the Euler transform generates the g.f. A(x):
A(x) = 1/((1-x)*(1-x^3)*(1-x^5)^2*(1-x^7)^5*(1-x^9)^12*(1-x^11)^33*(1-x^13)^91*...*(1-x^(2*n+1))^a(2*n)*...).
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(6) = 5 rooted trees with 6 non-root nodes as described in the comment are:
:           level sequence       out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 3 2 1 ]    [ 2 2 2 . . . . ]
:  O--o--o--o
:        .--o
:     .--o
:  .--o
:
:     2:  [ 0 1 2 2 2 2 1 ]    [ 2 4 . . . . . ]
:  O--o--o
:     .--o
:     .--o
:     .--o
:  .--o
:
:     3:  [ 0 1 2 2 1 2 2 ]    [ 2 2 . . 2 . . ]
:  O--o--o
:     .--o
:  .--o--o
:     .--o
:
:     4:  [ 0 1 2 2 1 1 1 ]    [ 4 2 . . . . . ]
:  O--o--o
:     .--o
:  .--o
:  .--o
:  .--o
:
:     5:  [ 0 1 1 1 1 1 1 ]    [ 6 . . . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
:  .--o
:  .--o
:
(End)
		

Crossrefs

Cf. A115593.

Programs

  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = 1/(n - 1) Sum[(2 m + 1) a[2 m + 1] a[n - k (2 m + 1)], {m, 0, Floor[n/2] - 1}, {k, Floor[(n - 1)/(2 m + 1)]}];
    Table[a[n], {n, 30}] (* Use offset 1 to simplify defining equation for G.f. Then apply xD_x, simplify, and equate coefficients to get above recurrence. - David Callan, Jul 07 2014 *)
  • PARI
    {a(n)=my(A=1+x,B); for(i=1,n, B=(A+subst(A,x,-x))/2; A=exp(sum(m=1,n,subst(B,x,x^m+x*O(x^n))*x^m/m))); polcoeff(A,n)}

Formula

Euler transform of the coefficients in (A(x) + A(-x))/2.
G.f. satisfies: A(x) = Product_{n>=0} 1/(1 - x^(2*n+1))^a(2*n).
G.f. satisfies: A(x)*A(-x) = A(x^2).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k and d is odd} d * a(d-1) ) * a(n-k). - Seiichi Manyama, May 31 2023