cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A258367 a(n) is the smallest A (in absolute value) such that for p = prime(n), 2^{(p-1)/2} == +-1 + A*p (mod p^2), i.e., such that p is a near-Wieferich prime.

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 8, 3, 14, 3, 18, 9, 9, 22, 18, 4, 18, 5, 1, 28, 30, 24, 3, 20, 46, 22, 47, 21, 15, 9, 57, 42, 15, 48, 28, 41, 48, 60, 85, 25, 74, 25, 52, 11, 32, 51, 17, 13, 34, 113, 13, 71, 2, 16, 64, 130, 81, 35, 37, 29, 39, 147, 68, 60, 71, 96, 92, 99, 12
Offset: 2

Views

Author

Felix Fröhlich, May 28 2015

Keywords

Comments

p is in A001220 iff a(n) = 0. This is the case iff A014664(n) = A243905(n), which happens for n = 183 and n = 490.
Is a(n) = 0 for any other n, and, if yes, are there infinitely many such n?

Crossrefs

Programs

  • PARI
    a(n,p=prime(n))=abs(centerlift(Mod(2,p^2)^((p-1)/2))\/p)
    apply(p->a(0,p), primes(100)[2..100]) \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = min(b(n) mod p, -b(n) mod p) where p = prime(n) and b(n) = Sum_{i=1..ceiling((p-1)/4)} (2i-1)^(p-2). - Daniel Chen, Sep 01 2022

A241014 Let p be the n-th prime, then a(n) = A/p where A is the smallest number (in absolute value) such that F_{p-(p/5)} == A (mod p^2) with F_n = A000045(n) and (p/5) the Legendre symbol.

Original entry on oeis.org

1, 1, 1, 3, 5, 3, -1, 3, -8, -3, -6, 13, -2, -4, 16, -25, 10, -13, 7, -16, -15, -30, 21, 5, 37, -4, 22, 24, 26, -53, 13, 64, 58, -22, -29, 60, 44, -3, 44, -43, -5, -50, 94, 31, -56, 5, -99, 3, -73, 18, 29, 5, -59, -1, 2
Offset: 1

Views

Author

Felix Fröhlich, Aug 13 2014

Keywords

Comments

a(n) is the smallest A such that p is a near-Wall-Sun-Sun prime. A gives the value of F_p-(p/5) modulo p^2 and a value of 0 would indicate a Wall-Sun-Sun prime. A244801 is similar but always gives the positive A, while this sequence gives A with the smallest absolute value.
a(1), with p=2, is technically ambiguous between 1 and -1, so a(1)=1 is by convention. Clearly this cannot happen for n>1 (where p^2 is odd). - Jeppe Stig Nielsen, Sep 09 2021

Crossrefs

Programs

  • Mathematica
    Array[(#3 - #2 Boole[#3 > #2/2])/#1 & @@ {#, #^2, Mod[Fibonacci[# - KroneckerSymbol[#, 5]], #^2]} &@ Prime[#] &, 55] (* Michael De Vlieger, Sep 08 2021 *)
  • PARI
    forprime(p=2, 1e2, a=fibonacci(p-kronecker(p, 5))%p^2; if(a>p^2/2, a-=p^2); a=a/p; print1(a, ", "))
    
  • PARI
    a(n)=my(p=prime(n)); centerlift(((Mod([1, 1; 1, 0], p^2))^(p-kronecker(p,5))))[1, 2]/p \\ Charles R Greathouse IV, Aug 21 2014

A246568 Near-Wieferich primes (primes p satisfying 2^((p-1)/2) == +-1 + A*p (mod p^2)) with |A| < 10.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 59, 67, 71, 89, 127, 251, 379, 569, 571, 1093, 1427, 1451, 1733, 2633, 2659, 2903, 3511, 13463, 15329, 15823, 26107, 60631, 546097, 2549177, 110057537, 165322639, 209227901, 671499313, 867457663, 3520624567
Offset: 1

Views

Author

Felix Fröhlich, Aug 30 2014

Keywords

Comments

The data section gives all terms up to 10^10. There are eight more terms up to 3*10^15 (see b-file).
A is essentially (A007663(n) modulo A000040(n))/2 (see Crandall et al. (1997), p. 437). The choice of the bound for A is rather arbitrary and selecting a larger A will result in more terms in a specific interval. For any p there exist two values of A whose sum is p, except when p is in A001220, in which case A = 0.

Crossrefs

Programs

A244801 Smallest m such that for the prime p = prime(n) the congruence F_(p-(p/5)) == mp (mod p^2) holds (i.e., smallest m such that prime(n) is a near-Wall-Sun-Sun prime), where F_k is the k-th Fibonacci number and (p/5) is the Legendre symbol.

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 16, 3, 15, 26, 25, 13, 39, 39, 16, 28, 10, 48, 7, 55, 58, 49, 21, 5, 37, 97, 22, 24, 26, 60, 13, 64, 58, 117, 120, 60, 44, 160, 44, 130, 174, 131, 94, 31, 141, 5, 112, 3, 154, 18, 29, 5, 182, 250, 2, 105
Offset: 1

Views

Author

Felix Fröhlich, Jul 06 2014

Keywords

Comments

A value of 0 indicates a Wall-Sun-Sun prime. No such prime is known and if one exists it is > 4*10^16 (cf. PrimeGrid WSS statistics).

Crossrefs

Programs

  • Mathematica
    A= 0; p = 0; While[A < 200, p = NextPrime[p];  A= Mod[(Fibonacci[p-JacobiSymbol[p,5]])/p, p]; Print[A]] (* Javier Rivera Romeu, Jan 11 2022 *)
  • PARI
    forprime(p=2, 10^2, a=fibonacci(p-kronecker(p, 5))%p^2; a=a/p; print1(a, ", "))
    
  • Sage
    A, p = 0, 0
    while A <200:
      p = next_prime(p)
      A = (fibonacci(p-legendre_symbol(p, 5))/p)%p
      print(A, end=", ") #Javier Rivera Romeu, Jan 08 2022

A354675 a(n) is the number of near-Wieferich primes with |A| <= 10 less than 10^n, where A(k) = A258367(k).

Original entry on oeis.org

3, 15, 21, 29, 34, 35, 36, 36, 41
Offset: 1

Views

Author

Felix Fröhlich, Jun 02 2022

Keywords

Comments

A(k) is A258367(k). I believe this was initially defined in Crandall et al. (1997) (in particular pp. 436-437) and it is now common practice for Wieferich searches to report primes with |A| below some predefined limit (for example, the ongoing search at PrimeGrid uses |A| <= 1000).

Examples

			n | a(n) | A006880(n) | a(n)/A006880(n)*100
--------------------------------------------
1 |    3 |          4 | 75.000000
2 |   15 |         25 | 60.000000
3 |   21 |        168 | 12.500000
4 |   29 |       1229 |  2.359642
5 |   34 |       9592 |  0.354462
6 |   35 |      78498 |  0.044587
7 |   36 |     664579 |  0.005417
8 |   36 |    5761455 |  0.000625
9 |   41 |   50847534 |  0.000081
		

Crossrefs

Programs

  • PARI
    a258367(n) = abs(centerlift(Mod(2, n^2)^((n-1)/2))\/n) \\ after Charles R Greathouse IV in A258367
    my(i=0, x=10); forprime(p=3, , if(p > x, print1(i, ", "); x=10*x); if(a258367(p) <= 10, i++))

A354676 a(n) = number of near-Wieferich primes with |A| <= 100 less than 10^n.

Original entry on oeis.org

3, 24, 105, 154, 213, 243, 268, 288, 307
Offset: 1

Views

Author

Felix Fröhlich, Jun 02 2022

Keywords

Comments

n | a(n) | A006880(n) | a(n)/A006880(n)*100
--------------------------------------------
1 | 3 | 4 | 75.000000
2 | 24 | 25 | 96.000000
3 | 105 | 168 | 62.500000
4 | 154 | 1229 | 12.530512
5 | 213 | 9592 | 2.220600
6 | 243 | 78498 | 0.309562
7 | 268 | 664579 | 0.040326
8 | 288 | 5761455 | 0.004998
9 | 307 | 50847534 | 0.000603

Crossrefs

Programs

  • PARI
    a258367(n) = abs(centerlift(Mod(2, n^2)^((n-1)/2))\/n) \\ after Charles R Greathouse IV in A258367
    my(i=0, x=10); forprime(p=3, , if(p > x, print1(i, ", "); x=10*x); if(a258367(p) <= 100, i++))

A354677 a(n) = number of near-Wieferich primes with |A| <= 1000 less than 10^n.

Original entry on oeis.org

3, 24, 167, 698, 1155, 1502, 1812, 2064, 2297
Offset: 1

Views

Author

Felix Fröhlich, Jun 02 2022

Keywords

Comments

n | a(n) | A006880(n) | a(n)/A006880(n)*100
--------------------------------------------
1 | 3 | 4 | 75.000000
2 | 24 | 25 | 96.000000
3 | 167 | 168 | 99.404761
4 | 698 | 1229 | 56.794141
5 | 1155 | 9592 | 12.041284
6 | 1502 | 78498 | 1.913424
7 | 1812 | 664579 | 0.272653
8 | 2064 | 5761455 | 0.035824
9 | 2297 | 50847534 | 0.004517

Crossrefs

Programs

  • PARI
    a258367(n) = abs(centerlift(Mod(2, n^2)^((n-1)/2))\/n) \\ after Charles R Greathouse IV in A258367
    my(i=0, x=10); forprime(p=3, , if(p > x, print1(i, ", "); x=10*x); if(a258367(p) <= 1000, i++))

A354678 a(n) = number of near-Wieferich primes with |A| <= 10000 less than 10^n.

Original entry on oeis.org

3, 24, 167, 1228, 5250, 8851, 11922, 14549, 16863
Offset: 1

Views

Author

Felix Fröhlich, Jun 02 2022

Keywords

Comments

n | a(n) | A006880(n) | a(n)/A006880(n)*100
---------------------------------------------
1 | 3 | 4 | 75.000000
2 | 24 | 25 | 96.000000
3 | 167 | 168 | 99.404761
4 | 1228 | 1229 | 99.918633
5 | 5250 | 9592 | 54.733110
6 | 8851 | 78498 | 11.275446
7 | 11922 | 664579 | 1.793917
8 | 14549 | 5761455 | 0.252523
9 | 16863 | 50847534 | 0.033163

Crossrefs

Programs

  • PARI
    a258367(n) = abs(centerlift(Mod(2, n^2)^((n-1)/2))\/n) \\ after Charles R Greathouse IV in A258367
    my(i=0, x=10); forprime(p=3, , if(p > x, print1(i, ", "); x=10*x); if(a258367(p) <= 10000, i++))
Showing 1-8 of 8 results.