A195989 Quotient of denominators of (BernoulliB(2n)/n) and BernoulliB(2n).
1, 2, 3, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 2, 3, 16, 1, 18, 1, 20, 21, 2, 1, 24, 1, 2, 27, 4, 1, 30, 1, 32, 3, 2, 1, 36, 1, 2, 3, 40, 1, 42, 1, 4, 9, 2, 1, 48, 1, 50, 3, 4, 1, 54, 11, 8, 3, 2, 1, 60, 1, 2, 63, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 3, 4, 1, 78, 1, 80, 81, 2, 1, 84
Offset: 1
Keywords
Examples
a(1) = 6/6 =1, a(2) = 60/30 =2, a(3) =126/42 =3, a(4) = 120/30 =4, a(5) = 66/66 =1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Programs
-
Magma
[Denominator(Bernoulli(2*n)/n)/Denominator(Bernoulli(2*n)): n in [1..100]]; // Vincenzo Librandi, Mar 12 2018
-
Maple
A195989 := proc(n) q1 := denom(bernoulli(2*n)/n) ; q2 := denom(bernoulli(2*n)) ; q1/q2 ; end proc: # R. J. Mathar, Jan 06 2013 # Alternatively, without Bernoulli numbers: A195989 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0): P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then P := P*f[1]^f[2] fi od; n/P end: seq(A195989(n),n=1..84); # Peter Luschny, Mar 12 2018
-
Mathematica
a[n_] := Denominator[ BernoulliB[2*n]/n] / Denominator[ BernoulliB[2*n]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jan 04 2013 *)
-
PARI
a(n) = my(b=bernfrac(2*n)); denominator(b/n)/denominator(b); \\ Michel Marcus, Mar 12 2018
Formula
a(n) = n/A300711(n). - Peter Luschny, Mar 12 2018
2a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 divides 2n. - Peter Luschny, Mar 12 2018
Comments