cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196148 Antidiagonal sums of square array A111910.

Original entry on oeis.org

1, 2, 7, 30, 146, 772, 4331, 25398, 154158, 961820, 6137734, 39909740, 263665252, 1765815560, 11966535091, 81937361702, 566185489878, 3944202596652, 27676632525362, 195481707009220, 1388890568962556
Offset: 0

Views

Author

Peter Bala, Oct 13 2011

Keywords

Crossrefs

Cf. A111910.
Cf. A174119.

Programs

  • Magma
    [(&+[(n-j+1)*Binomial(n+1, j)*Binomial(2*n+4, 2*j+2)/((n+1)*(n+2)*(2*n+3)): j in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 11 2021
  • Mathematica
    Table[Sum[(n+1)! * (2*n+1)! / ((n-k+1)! * (k+1)! * (2*n-2*k+1)! * (2*k+1)!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
    Table[HypergeometricPFQ[{-n, -n-1/2, -n-1}, {3/2, 2}, -1], {n,0,25}] (* G. C. Greubel, Feb 11 2021 *)
  • PARI
    S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!);
    a(n) = sum(k = 0, n, S(n-k,k)); \\ Michel Marcus, Dec 16 2017
    
  • Sage
    [hypergeometric([-n, -n-1/2, -n-1], [3/2, 2], -1).simplify_hypergeometric() for n in (0..25)] # G. C. Greubel, Feb 11 2021
    

Formula

a(n) = Sum_{k = 0..n} S(n-k,k) where S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!).
From Vaclav Kotesovec, Dec 16 2017: (Start)
a(n) ~ 2^(3*n+3) / (sqrt(3*Pi) * n^(5/2)).
Recurrence: (n+2)*(2*n+3)*a(n) = 2*(7*n^2 + 7*n + 1)*a(n-1) + 8*(n-1)*(2*n-1)*a(n-2). (End)
a(n) = hypergeometric3F2([-n, -n-1/2, -n-1], [3/2, 2], -1). - G. C. Greubel, Feb 11 2021
Let E(x) = Sum_{n >= 0} x^n/((n+1)!*(2*n+1)!). Then E(x)^2 = 1 + 2*x/(2!*3!) + 7*x^2/(3!*5!) + 30*x^3/(4!*7!) + ... + a(n)*x^n/((n+1)!*(2*n+1)!) + ... is a generating function for the sequence. - Peter Bala, Sep 20 2021